Factory testing of long submarine XLPE cables using frequency-tuned resonant systems

Author(s):  
J. Karlstrand ◽  
G. Henning ◽  
S. Schierig ◽  
P. Coors
Nanophotonics ◽  
2020 ◽  
Vol 9 (12) ◽  
pp. 4009-4019
Author(s):  
Artur Movsesyan ◽  
Gwénaëlle Lamri ◽  
Sergei Kostcheev ◽  
Anke Horneber ◽  
Annika Bräuer ◽  
...  

AbstractMulti-resonant plasmonic simple geometries like nanocylinders and nanorods are highly interesting for two-photon photoluminescence and second harmonic generation applications, due to their easy fabrication and reproducibility in comparison with complex multi-resonant systems like dimers or nanoclusters. We demonstrate experimentally that by using a simple gold nanocylinder we can achieve a double resonantly enhanced two-photon photoluminescence of quantum dots, by matching the excitation wavelength of the quantum dots with a dipolar plasmon mode, while the emission is coupled with a radiative quadrupolar mode. We establish a method to separate experimentally the enhancement factor at the excitation and at the emission wavelengths for this double resonant system. The sensitivity of the spectral positions of the dipolar and quadrupolar plasmon resonances to the ellipticity of the nanocylinders and its impact on the two-photon photoluminescence enhancement are discussed.


1997 ◽  
Author(s):  
Y. A. Lupashko ◽  
V. V. Mussil ◽  
Alexander P. Ovcharenko
Keyword(s):  

2011 ◽  
Vol 21 (3) ◽  
pp. 306-310 ◽  
Author(s):  
Oleg Y. Volkov ◽  
Yuri Y. Divin ◽  
Vladimir N. Gubankov ◽  
Irina I. Gundareva ◽  
Valery V. Pavlovskiy

2009 ◽  
Vol 41 (1) ◽  
pp. 65-86 ◽  
Author(s):  
Mohammad Kurdi ◽  
Philip Beran ◽  
Bret Stanford ◽  
Richard Snyder
Keyword(s):  

2021 ◽  
Vol 7 (23) ◽  
pp. eabg8118
Author(s):  
Rodion Kononchuk ◽  
Joshua Feinberg ◽  
Joseph Knee ◽  
Tsampikos Kottos

Typical sensors detect small perturbations by measuring their effects on a physical observable, using a linear response principle (LRP). It turns out that once LRP is abandoned, new opportunities emerge. A prominent example is resonant systems operating near Nth-order exceptional point degeneracies (EPDs) where a small perturbation ε ≪ 1 activates an inherent sublinear response ∼εN≫ε in resonant splitting. Here, we propose an alternative sublinear optomechanical sensing scheme that is rooted in Wigner’s cusp anomalies (WCAs), first discussed in the framework of nuclear reactions: a frequency-dependent square-root singularity of the differential scattering cross section around the energy threshold of a newly opened channel, which we use to amplify small perturbations. WCA hypersensitivity can be applied in a variety of sensing applications, besides optomechanical accelerometry discussed in this paper. Our WCA platforms are compact, do not require a judicious arrangement of active elements (unlike EPD platforms), and, if chosen, can be cavity free.


Nanophotonics ◽  
2020 ◽  
Vol 10 (1) ◽  
pp. 385-392
Author(s):  
Joeri Lenaerts ◽  
Hannah Pinson ◽  
Vincent Ginis

AbstractMachine learning offers the potential to revolutionize the inverse design of complex nanophotonic components. Here, we propose a novel variant of this formalism specifically suited for the design of resonant nanophotonic components. Typically, the first step of an inverse design process based on machine learning is training a neural network to approximate the non-linear mapping from a set of input parameters to a given optical system’s features. The second step starts from the desired features, e.g. a transmission spectrum, and propagates back through the trained network to find the optimal input parameters. For resonant systems, this second step corresponds to a gradient descent in a highly oscillatory loss landscape. As a result, the algorithm often converges into a local minimum. We significantly improve this method’s efficiency by adding the Fourier transform of the desired spectrum to the optimization procedure. We demonstrate our method by retrieving the optimal design parameters for desired transmission and reflection spectra of Fabry–Pérot resonators and Bragg reflectors, two canonical optical components whose functionality is based on wave interference. Our results can be extended to the optimization of more complex nanophotonic components interacting with structured incident fields.


2021 ◽  
Author(s):  
Laurie S. Duthie ◽  
Hussain A. Saiood ◽  
Abdulaziz A. Al-Anizi ◽  
Norman B. Moore ◽  
Carol Correia

Abstract Successful reservoir surveillance and production monitoring is a key component for effectively managing any field production strategy. For production logging in openhole horizontal extended reach wells (ERWs), the challenges are formidable and extensive; logging these extreme lengths in a cased hole would be difficult enough, but are considerably exaggerated in the openhole condition. A coiled tubing (CT) logging run in open hole must also contend with increased frictional forces, high dogleg severity, a quicker onset of helical buckling and early lockup. The challenge to effectively log these ERWs is further complicated by constraints in the completion where electrical submersible pumps (ESPs) are installed including a 2.4" bypass section. Although hydraulically powered coiled tubing tractors already existed, a slim CT tractor with real-time logging capabilities was not available in the market. In partnership with a specialist CT tractor manufacturer, a slim logging CT tractor was designed and built to meet the exceptional demands to pull the CT to target depth. The tractor is 100% hydraulically powered, with no electrical power allowing for uninterrupted logging during tractoring. The tractor is powered by the differential pressure from the bore of the CT to the wellbore, and is operated by a pre-set pump rate from surface. Developed to improve the low coverage in open hole ERW logging jobs, the tractor underwent extensive factory testing before being deployed to the field. The tractor was rigged up on location with the production logging tool and ran in hole. Once the coil tubing locked up, the tractor was activated and pulled the coil to cover over 90% of the open hole section delivering a pulling force of up to 3,200 lb. Real-time production logging was conducted simultaneously with the tractor activated, flowing and shut-in passes were completed to successfully capture the zonal inflow profile. Real-time logging with the tractor is logistically efficient and allows instantaneous decision making to repeat passes for improved data quality. The new slim logging tractor is the world's slimmest most compact, and the first of its kind CT tractor that enables production logging operations in horizontal extended reach open hole wells. The ability to successfully log these extended reach wells cannot be understated, reservoir simulations and management decisions can only as good as the quality of data available. Some of the advantages of drilling extended reach wells such as increased reservoir contact, reduced footprint and less wells drilled will be lost if sufficient reservoir surveillance cannot be achieved. To maximize the benefits of ERWs, creative solutions and innovative designs must continually be developed to push the boundaries further.


Author(s):  
M. Gai ◽  
E. C. Schloemer ◽  
J. E. Freedman ◽  
A. C. Hayes ◽  
S. K. Korotky ◽  
...  
Keyword(s):  

2013 ◽  
Vol 278-280 ◽  
pp. 831-834 ◽  
Author(s):  
Xiao Sun ◽  
Hao Zhou ◽  
Xiang Jiang Lu ◽  
Yong Yang

This paper designed a motor winding testing system, it can do the dielectric withstand voltage test of inter-turn under 30kV.The system can communicate effectively between PC and machine, by using the PC's powerful capacity of process data and PLC's better stability and the Labview's convenient UI. So the system has real-time data collection, preservation, analysis and other characteristics. This system is able to achieve factory testing and type testing of the motor windings facilitating. Various performance indicators were stable and reliable by field test during a long time.


Sign in / Sign up

Export Citation Format

Share Document