Life signals detection system based on a continuous‐wave X‐band radar

2016 ◽  
Vol 52 (23) ◽  
pp. 1903-1904 ◽  
Author(s):  
M. Donelli ◽  
F. Viani
2021 ◽  
Vol 11 (1) ◽  
Author(s):  
D. Winzen ◽  
V. Hannen ◽  
M. Bussmann ◽  
A. Buß ◽  
C. Egelkamp ◽  
...  

AbstractThe $$^2{\mathrm{S}}_{1/2}{-}^2{\mathrm{P}}_{{1}/2}$$ 2 S 1 / 2 - 2 P 1 / 2 and $$^2{\mathrm{S}}_{1/2}{-}^2{\mathrm{P}}_{{3}/2}$$ 2 S 1 / 2 - 2 P 3 / 2 transitions in Li-like carbon ions stored and cooled at a velocity of $$\beta \approx 0.47$$ β ≈ 0.47 in the experimental storage ring (ESR) at the GSI Helmholtz Centre in Darmstadt have been investigated in a laser spectroscopy experiment. Resonance wavelengths were obtained using a new continuous-wave UV laser system and a novel extreme UV (XUV) detection system to detect forward emitted fluorescence photons. The results obtained for the two transitions are compared to existing experimental and theoretical data. A discrepancy found in an earlier laser spectroscopy measurement at the ESR with results from plasma spectroscopy and interferometry has been resolved and agreement between experiment and theory is confirmed.


Author(s):  
Jie Lian ◽  
Xu Yuan ◽  
Ming Li ◽  
Nian-Feng Tzeng

The fall detection system is of critical importance in protecting elders through promptly discovering fall accidents to provide immediate medical assistance, potentially saving elders' lives. This paper aims to develop a novel and lightweight fall detection system by relying solely on a home audio device via inaudible acoustic sensing, to recognize fall occurrences for wide home deployment. In particular, we program the audio device to let its speaker emit 20kHz continuous wave, while utilizing a microphone to record reflected signals for capturing the Doppler shift caused by the fall. Considering interferences from different factors, we first develop a set of solutions for their removal to get clean spectrograms and then apply the power burst curve to locate the time points at which human motions happen. A set of effective features is then extracted from the spectrograms for representing the fall patterns, distinguishable from normal activities. We further apply the Singular Value Decomposition (SVD) and K-mean algorithms to reduce the data feature dimensions and to cluster the data, respectively, before input them to a Hidden Markov Model for training and classification. In the end, our system is implemented and deployed in various environments for evaluation. The experimental results demonstrate that our system can achieve superior performance for detecting fall accidents and is robust to environment changes, i.e., transferable to other environments after training in one environment.


2020 ◽  
Vol 12 (9) ◽  
pp. 855-861
Author(s):  
Felix Rech ◽  
Kai Huang

AbstractFrom the prevention of natural disasters such as landslide and avalanches, to the enhancement of energy efficiencies in chemical and civil engineering industries, understanding the collective dynamics of granular materials is a fundamental question that are closely related to our daily lives. Using a recently developed multi-static radar system operating at 10 GHz (X-band), we explore the possibility of tracking a projectile moving inside a granular medium, focusing on possible sources of uncertainties in the detection and reconstruction processes. On the one hand, particle tracking with continuous-wave radar provides an extremely high temporal resolution. On the other hand, there are still challenges in obtaining tracer trajectories accurately. We show that some of the challenges can be resolved through a correction of the IQ mismatch in the raw signals obtained. Consequently, the tracer trajectories can be obtained with sub-millimeter spatial resolution. Such an advance can not only shed light on radar particle tracking, but also on a wide range of scenarios where issues relevant to IQ mismatch arise.


2016 ◽  
Vol 172 (1-3) ◽  
pp. 133-138 ◽  
Author(s):  
Hanan Elajaili ◽  
Joseph McPeak ◽  
Alexander Romanyukha ◽  
Priyanka Aggarwal ◽  
Sandra S. Eaton ◽  
...  

2013 ◽  
Vol 111 (18-19) ◽  
pp. 2664-2673 ◽  
Author(s):  
Deborah G. Mitchell ◽  
Mark Tseitlin ◽  
Richard W. Quine ◽  
Virginia Meyer ◽  
Mark E. Newton ◽  
...  

2018 ◽  
Vol 2018 ◽  
pp. 1-8
Author(s):  
Sang-Hwa Lee ◽  
Min-Sik Kim ◽  
Jong-Kyu Kim ◽  
Jong-In Lim ◽  
Ic-Pyo Hong

This study designed and fabricated a frequency-selective structure-based security paper for the electromagnetic detection system of a security gate, which aims to prevent leakage of confidential documents. When a functional paper embedded with a frequency-selective pattern that selectively reflects a specific frequency is being leaked out of a security zone, the electromagnetic detection system receives and detects the intensity of the electromagnetic wave reflected from the security paper passing through an antenna gate, which transmits/receives RF signals. A stable detection performance of the security paper can be ensured by improving the incidence angle stability for incident waves and reducing the reflection loss. This study designed a frequency-selective structure with stable frequency reflection properties at the X-band by utilizing a Jerusalem cross structure. The proposed design was realized using the screen printing technique, which could implement a circuit, to print silver ink on a plain paper. To verify the applicability of the frequency-selective structure-based security paper, an RF detection system with a multiple antenna array was constructed and the intensity of the received signals was measured. The measurement was performed for various scenarios, and the result showed that the proposed security paper was well detected.


2019 ◽  
Vol 58 (25) ◽  
pp. 6906 ◽  
Author(s):  
Seyed Ghasem Razavipour ◽  
James A. Gupta ◽  
Graeme Sabiston ◽  
Nicaulas Sabourin ◽  
Andrew Bezinger ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document