High temperature operation of α-silicon carbide buried-gate junction field-effect transistors

1991 ◽  
Vol 27 (12) ◽  
pp. 1038 ◽  
Author(s):  
G. Kelner ◽  
S. Binari ◽  
M. Shur ◽  
J. Palmour
2013 ◽  
Vol 34 (9) ◽  
pp. 1175-1177 ◽  
Author(s):  
Takayuki Iwasaki ◽  
Yuto Hoshino ◽  
Kohei Tsuzuki ◽  
Hiromitsu Kato ◽  
Toshiharu Makino ◽  
...  

2013 ◽  
Vol 740-742 ◽  
pp. 929-933 ◽  
Author(s):  
Rémy Ouaida ◽  
Cyril Buttay ◽  
Anhdung Hoang ◽  
Raphaël Riva ◽  
Dominique Bergogne ◽  
...  

Silicon Carbide (SiC) Junction-Field Effect Transistors (JFETs) are attractive devices for power electronics. Their high temperature capability should allow them to operate with a reduced cooling system. However, experiments described in this paper conclude to the existence of runaway conditions in which these transistors will reach destructive temperatures.


2005 ◽  
Vol 97 (4) ◽  
pp. 046106 ◽  
Author(s):  
Stephen K. Powell ◽  
Neil Goldsman ◽  
Aivars Lelis ◽  
James M. McGarrity ◽  
Flynn B. McLean

2016 ◽  
Vol 13 (4) ◽  
pp. 143-154 ◽  
Author(s):  
Jim Holmes ◽  
A. Matthew Francis ◽  
Ian Getreu ◽  
Matthew Barlow ◽  
Affan Abbasi ◽  
...  

In the last decade, significant effort has been expended toward the development of reliable, high-temperature integrated circuits. Designs based on a variety of active semiconductor devices including junction field-effect transistors and metal-oxide-semiconductor (MOS) field-effect transistors have been pursued and demonstrated. More recently, advances in low-power complementary MOS (CMOS) devices have enabled the development of highly integrated digital, analog, and mixed-signal integrated circuits. The results of elevated temperature testing (as high as 500°C) of several building block circuits for extended periods (up to 100 h) are presented. These designs, created using the Raytheon UK's HiTSiC® CMOS process, present the densest, lowest-power integrated circuit technology capable of operating at extreme temperatures for any period. Based on these results, Venus nominal temperature (470°C) transistor models and gate-level timing models were created using parasitic extracted simulations. The complete CMOS digital gate library is suitable for logic synthesis and lays the foundation for complex integrated circuits, such as a microcontroller. A 16-bit microcontroller, based on the OpenMSP 16-bit core, is demonstrated through physical design and simulation in SiC-CMOS, with an eye for Venus as well as terrestrial applications.


2011 ◽  
Vol 50 (1S1) ◽  
pp. 01AD03 ◽  
Author(s):  
Takayuki Sugiyama ◽  
Hiroshi Amano ◽  
Daisuke Iida ◽  
Motoaki Iwaya ◽  
Satoshi Kamiyama ◽  
...  

1997 ◽  
Vol 483 ◽  
Author(s):  
J. C. Zolperw

AbstractJunction field effect transistors (JFETs) are attractive for high-temperature or highpower operation since they rely on a buried semiconductor junction, and not a metal semiconductor interface as in a metal semiconductor (MESFET) or heterojunction field effect transistor (HFET), for modulating the transistor channel. This is important since a metal/semiconductor interface often degrades at elevated temperatures, either due to the ambient temperature or to Joule heating at high current levels, while a buried semiconductor junction can withstand higher temperatures. In fact, for proper design, the JFET becomes limited by thermal carrier generation in the semiconductor and not metallurgical degradation of the gate electrode.In this talk an overview is given of JFET technology based on GaAs, SiC, and GaN. While impressive room temperature, high-frequency, results have been reported for GaAs JFET's with unit current gain cut-off frequencies up to 50 GHz, more work is needed to limit substrate conduction for optimum operation at 300 °C and above. For SiC JFETs, well behaved transistor operation has been maintained up to 600 °C, however, increased frequency performance is needed. More recently, a GaN JFET has also been demonstrated that is promising for similarly high temperature operation but is presently limited by buffer conduction. Future directions for each of these technologies, and potential extension to high power switching devices such as thyristors, will be presented at the conference.


MRS Bulletin ◽  
2005 ◽  
Vol 30 (4) ◽  
pp. 293-298 ◽  
Author(s):  
Jian H. Zhao

AbstractSilicon carbide power field-effect transistors, including power vertical-junction FETs (VJFETs) and metal oxide semiconductor FETs (MOSFETs), are unipolar power switches that have been investigated for high-temperature and high-power-density applications. Recent progress and results will be reviewed for different device designs such as normally-OFF and normally-ON VJFETs, double-implanted MOSFETs, and U-shaped-channel MOSFETs. The advantages and disadvantages of SiC VJFETs and MOSFETs will be discussed. Remaining challenges will be identified.


Sign in / Sign up

Export Citation Format

Share Document