Room-temperature, CW operation of lattice-matched long-wavelength VCSELs

2000 ◽  
Vol 36 (17) ◽  
pp. 1465 ◽  
Author(s):  
E. Hall ◽  
S. Nakagawa ◽  
G. Almuneau ◽  
J.K. Kim ◽  
L.A. Coldren
2008 ◽  
Vol 44 (8) ◽  
pp. 525 ◽  
Author(s):  
Q.J. Wang ◽  
C. Pflügl ◽  
L. Diehl ◽  
F. Capasso ◽  
S. Furuta ◽  
...  

1996 ◽  
Vol 450 ◽  
Author(s):  
C. A. Wang ◽  
G. W. Turner ◽  
M. J. Manfra ◽  
H. K. Choi ◽  
D. L. Spears

ABSTRACTGai1−xInxASySb1-y (0.06 < x < 0.18, 0.05 < y < 0.14) epilayers were grown lattice-matched to GaSb substrates by low-pressure organometallic vapor phase epitaxy (OMVPE) using triethylgallium, trimethylindium, tertiarybutylarsine, and trimethylantimony. These epilayers have a mirror-like surface morphology, and exhibit room temperature photoluminescence (PL) with peak emission wavelengths (λP,300K) out to 2.4 μm. 4K PL spectra have a full width at half-maximum of 11 meV or less for λP,4K < 2.1 μm (λP,300K = 2.3 μm). Nominally undoped layers are p-type with typical 300K hole concentration of 9 × 1015 cm−3 and mobility ∼ 450 to 580 cm2/V-s for layers grown at 575°C. Doping studies are reported for the first time for GalnAsSb layers doped n type with diethyltellurium and p type with dimethylzinc. Test diodes of p-GalnAsSb/n-GaSb have an ideality factor that ranges from 1.1 to 1.3. A comparison of electrical, optical, and structural properties of epilayers grown by molecular beam epitaxy indicates OMVPE-grown layers are of comparable quality.


1989 ◽  
Vol 160 ◽  
Author(s):  
G. Bai ◽  
M-A. Nicolet ◽  
S.-J. Kim ◽  
R.G. Sobers ◽  
J.W. Lee ◽  
...  

AbstractSingle layers of ~ 0.5µm thick InuGa1-uAs1-vPv (0.52 < u < 0.63 and 0.03 < v < 0.16) were grown epitaxially on InP(100) substrates by liquid phase epitaxy at ~ 630°C. The compositions of the films were chosen to yield a constant banndgap of ~ 0.8 eV (λ = 1.55 µm) at room temperature. The lattice mismatch at room temperature between the epitaxial film and the substrate varies from - 4 × 10-3 to + 4 × 10-3. The strain in the films was characterized in air by x-ray double crystal diffractometry with a controllable heating stage from 23°C to ~ 700°C. All the samples have an almost coherent interfaces from 23°C to about ~ 330°C with the lattice mismatch accomodated mainly by the tetragonal distortion of the epitaxial films. In this temperature range, the x-ray strain in the growth direction increases linearly with temperature at a rate of (2.0 ± 0.4) × 10-6/°C and the strain state of the films is reversible. Once the samples are heated above ~ 300°C, a significant irreversible deterioration of the epitaxial films sets in.


2007 ◽  
Vol 91 (19) ◽  
pp. 191905 ◽  
Author(s):  
Atsushi Kobayashi ◽  
Satoshi Kawano ◽  
Kohei Ueno ◽  
Jitsuo Ohta ◽  
Hiroshi Fujioka ◽  
...  

2000 ◽  
Vol 5 (S1) ◽  
pp. 1-7 ◽  
Author(s):  
Masayoshi Koike ◽  
Shiro Yamasaki ◽  
Yuta Tezen ◽  
Seiji Nagai ◽  
Sho Iwayama ◽  
...  

GaN-based short wavelength laser diodes are the most promising key device for a digital versatile disk. We have been improving the important points of the laser diodes in terms of optical guiding layers, mirror facets. The continuous wave laser irradiation at room temperature could be achieved successfully by reducing the threshold current to 60 mA (4 kA/cm2). We have tried to apply the multi low temperature buffer layers to the laser diodes for the first time to reduce the crystal defects.


1977 ◽  
Vol 16 (7) ◽  
pp. 1273-1274 ◽  
Author(s):  
Kunishige Oe ◽  
Seigo Ando ◽  
Koichi Sugiyama

Sign in / Sign up

Export Citation Format

Share Document