Hybrid precoding in point-to-point massive multiple-input multiple-output systems based on normalised matrix adaptive method

2017 ◽  
Vol 11 (12) ◽  
pp. 1882-1885 ◽  
Author(s):  
Yongpan Feng ◽  
Suk Chan Kim
2021 ◽  
Vol 17 (11) ◽  
pp. 155014772110553
Author(s):  
Xiaoping Zhou ◽  
Haichao Liu ◽  
Bin Wang ◽  
Qian Zhang ◽  
Yang Wang

Millimeter-wave massive multiple-input multiple-output is a key technology in 5G communication system. In particular, the hybrid precoding method has the advantages of being power efficient and less expensive than the full-digital precoding method, so it has attracted more and more attention. The effectiveness of this method in simple systems has been well verified, but its performance is still unknown due to many problems in real communication such as interference from other users and base stations, and users are constantly on the move. In this article, we propose a dynamic user clustering hybrid precoding method in the high-dimensional millimeter-wave multiple-input multiple-output system, which uses low-dimensional manifolds to avoid complicated calculations when there are many antennas. We model each user set as a novel Convolutional Restricted Boltzmann Machine manifold, and the problem is transformed into cluster-oriented multi-manifold learning. The novel Convolutional Restricted Boltzmann Machine manifold learning seeks to learn embedded low-dimensional manifolds through manifold learning in the face of user mobility in clusters. Through proper user clustering, the hybrid precoding is investigated for the sum-rate maximization problem by manifold quasi-conjugate gradient methods. This algorithm avoids the traditional method of processing high-dimensional channel parameters, achieves a high signal-to-noise ratio, and reduces computational complexity. The simulation result table shows that this method can get almost the best summation rate and higher spectral efficiency compared with the traditional method.


Author(s):  
Ziyao Hong ◽  
Ting Li ◽  
Fei Li

Abstract Unmanned aerial vehicle (UAV)-enabled communication system provides flexibility and reliability compared to conventional ones. Millimeter wave (mmWave) and massive multiple-input–multiple-output (MIMO) have widely been researched since recent years, which are promising techniques for the next and even the later generation communication system. Hybrid precoding, as a method to reduce the high cost in hardware and power brought by massive antenna array, develops fiercely and is often combined to deep learning, a kind of popular optimization tool, which brings an overwhelming performance. On the other hand, there are not so many attentions about the hybrid precoding in time-varying mmWave massive MIMO, which is necessary to be considered in a UAV-enabled communication scenario because the performance will degrade seriously if the channel changed while the transmitter and receiver use the precoding matrix corresponding to the expired channel, yet. In this paper, we propose a double-pilot-based hybrid precoding system, which completes analog precoding and digital precoding separately—predicting the previous one using deep learning structure and updating equivalent channel frequently for the post one by enhancing the frequency of equivalent channel estimation.


2017 ◽  
Vol 1 (3) ◽  
pp. 72
Author(s):  
Tu Bui-Thi-Minh ◽  
Xung Le ◽  
Vien Nguyen-Duy-Nhat

In this paper, we focus on the precoding design for sum rate maximization while considering the effects of residual SI for point – to-point multiple input/multiple output (MIMO) Full-Duplex systems. The MMSE-based beamforming algorithm was proposed to cancel the SI. The results shown that, the self-interference cancellation is done by matrix precoding at the transmitter if the total number of transmitting antenna of two nodes is greater than the number of receiving antenna of one node. The Bit Error Rate (BER) was also evaluated in the simulation.


2015 ◽  
Vol 49 (6) ◽  
pp. 161-165 ◽  
Author(s):  
Pierre-Philippe J. Beaujean

AbstractAs underwater acoustic communication technology is becoming more mature, it is increasingly used in the marine industry, scientific community, and military. This article enquires about the latest developments produced by academia and identifies new technological trends in this field. The latest trends in point-to-point communications, multiple-input multiple-output technology, and underwater acoustic networking are reviewed.


2019 ◽  
Vol 2019 ◽  
pp. 1-12
Author(s):  
Jian Jun Ding ◽  
Jing Jiang

Hybrid precoding is a promising technology for massive multiple-input multiple-output (MIMO) systems. It can reduce the number of radio frequency (RF) chains. However, the power consumption is still very high owing to the large-scale antenna array. In this paper, we propose an energy-efficient precoding scheme based on antenna selection technology. The precoding scheme greatly increases the energy efficiency (EE) of the system. In the first step, we derive an exact closed-form expression of EE. Meanwhile, we further study the relationship between the number of transmit antennas and EE on the basis of the exact closed-form expression of EE. We prove that there exists an optimal value. When the number of transmit antennas equals to the value, the EE of the system can reach the maximum by a proper hybrid precoding scheme. Then, we propose an antenna selection algorithm to select antennas from the transmit antennas. And the number of selected antennas equals to the optimal value. Subsequently, we design the analog precoder based on a codebook to maximize the equivalent channel gain. At last, we further improve the EE by baseband digital precoding. The precoding algorithm we proposed offers a compromise between spectral efficiency (SE) and EE in millimeter wave (mmWave) massive MIMO systems. Finally, simulation results validate our theoretical analysis and show that a substantial EE gain can be obtained over the precoding scheme we proposed without large performance loss.


2021 ◽  
Author(s):  
Rajashekhar Myadar ◽  
M. Vanidevi

Abstract Massive MIMO (multiple input multiple output) systems are best suitable for mmWave communications improving throughput and spectral efficiency in 5G. Beamforming is a wireless technique adopted by massive MIMO and used in 4G & 5G to increase the directivity and energy efficiency by focusing the signal in specific direction supporting only single user transmission with one data stream. Precoding is a generalized form of beamforming to support multi-stream transmission in multi-antenna wireless communication, such that combination of analog and digital precoding forms the hybrid precoding which shows good performance with less complexity. Successive Interference Cancelation (SIC) is a technique in which optimization of different antenna arrays will be done one by one such that while optimizing the capacity of specific array contribution of earlier optimized array is removed from the total capacity and precoder of that specific optimizing array will be computed. In this paper we have designed the SIC based hybrid precoding using sub-connected and fully-connected structures for multi-user (MU) case and compared them with the optimal precoding for mmWave massive MIMO systems in a 3D scenario, where both azimuth and elevation angles are taken into account in the channel. The proposed algorithms are simulated in the MATLAB and compared their performance with different parameters and shown that SIC-based scheme is near-optimal for multi-user case.


Sign in / Sign up

Export Citation Format

Share Document