Enhancing the predictive coding efficiency with control technologies for lossless compression of images

2012 ◽  
Vol 6 (3) ◽  
pp. 251 ◽  
Author(s):  
C.-H. Lee ◽  
L.-J. Kau
Author(s):  
Urvashi Sharma ◽  
Meenakshi Sood ◽  
Emjee Puthooran ◽  
Yugal Kumar

The digitization of human body, especially for treatment of diseases can generate a large volume of data. This generated medical data has a large resolution and bit depth. In the field of medical diagnosis, lossless compression techniques are widely adopted for the efficient archiving and transmission of medical images. This article presents an efficient coding solution based on a predictive coding technique. The proposed technique consists of Resolution Independent Gradient Edge Predictor16 (RIGED16) and Block Based Arithmetic Encoding (BAAE). The objective of this technique is to find universal threshold values for prediction and provide an optimum block size for encoding. The validity of the proposed technique is tested on some real images as well as standard images. The simulation results of the proposed technique are compared with some well-known and existing compression techniques. It is revealed that proposed technique gives a higher coding efficiency rate compared to other techniques.


2014 ◽  
Vol 1 (1) ◽  
pp. 1-12 ◽  
Author(s):  
William J. Matthews ◽  
Devin B. Terhune ◽  
Hedderik van Rijn ◽  
David M. Eagleman ◽  
Marc A. Sommer ◽  
...  

Author(s):  
Urvashi Sharma ◽  
Meenakshi Sood ◽  
Emjee Puthooran

The proposed block-based lossless coding technique presented in this paper targets at compression of volumetric medical images of 8-bit and 16-bit depth. The novelty of the proposed technique lies in its ability of threshold selection for prediction and optimal block size for encoding. A resolution independent gradient edge detector is used along with the block adaptive arithmetic encoding algorithm with extensive experimental tests to find a universal threshold value and optimal block size independent of image resolution and modality. Performance of the proposed technique is demonstrated and compared with benchmark lossless compression algorithms. BPP values obtained from the proposed algorithm show that it is capable of effective reduction of inter-pixel and coding redundancy. In terms of coding efficiency, the proposed technique for volumetric medical images outperforms CALIC and JPEG-LS by 0.70 % and 4.62 %, respectively.


2020 ◽  
Vol 10 (14) ◽  
pp. 4918
Author(s):  
Shaofei Dai ◽  
Wenbo Liu ◽  
Zhengyi Wang ◽  
Kaiyu Li ◽  
Pengfei Zhu ◽  
...  

This paper reports on an efficient lossless compression method for periodic signals based on adaptive dictionary predictive coding. Some previous methods for data compression, such as difference pulse coding (DPCM), discrete cosine transform (DCT), lifting wavelet transform (LWT) and KL transform (KLT), lack a suitable transformation method to make these data less redundant and better compressed. A new predictive coding approach, basing on the adaptive dictionary, is proposed to improve the compression ratio of the periodic signal. The main criterion of lossless compression is the compression ratio (CR). In order to verify the effectiveness of the adaptive dictionary predictive coding for periodic signal compression, different transform coding technologies, including DPCM, 2-D DCT, and 2-D LWT, are compared. The results obtained prove that the adaptive dictionary predictive coding can effectively improve data compression efficiency compared with traditional transform coding technology.


2016 ◽  
Author(s):  
Biao Han ◽  
Rufin VanRullen

AbstractPredictive coding is an influential model emphasizing interactions between feedforward and feedback signals. Here, we investigated its temporal dynamics. Two gray disks with different versions of the same stimulus, one enabling predictive feedback (a 3D-shape) and one impeding it (random-lines), were simultaneously presented on the left and right of fixation. Human subjects judged the luminance of the two disks while EEG was recorded. Independently of the spatial response (left/right), we found that the choice of 3D-shape or random-lines as the brighter disk (our measure of post-stimulus predictive coding efficiency on each trial) fluctuated along with the pre-stimulus phase of two spontaneous oscillations: a ~5Hz oscillation in contralateral frontal electrodes and a ~16Hz oscillation in contralateral occipital electrodes. This pattern of results demonstrates that predictive coding is a rhythmic process, and suggests that it could take advantage of faster oscillations in low-level areas and slower oscillations in high-level areas.


2003 ◽  
Vol 15 (06) ◽  
pp. 235-242 ◽  
Author(s):  
SHAOU-GANG MIAOU ◽  
SHIH-TSE CHEN ◽  
SHU-NIEN CHAO

As the coming era of digitized medical information, a close-at-hand challenge to deal with is the storage and transmission requirement of enormous data, including medical images. Compression is one of the indispensable techniques to solve this problem. In this work, we propose a dynamic vector quantization (DVQ) scheme with distortion-constrained codebook replenishment (DCCR) mechanism in wavelet domain. In the DVQ-DCCR mechanism, a novel tree-structure vector and the well-known SPIHT technique are combined to provide excellent coding performance in terms of compression ratio and peak signal-to-noise ratio for lossy compression. For the lossless compression in similar scheme, we replace traditional 9/7 wavelet filters by 5/3 filters and implement the wavelet transform in the lifting structure. Furthermore, a detection strategy is proposed to stop the SPIHT coding for less significant bit planes, where SPIHT begins to lose its coding efficiency. Experimental results show that the proposed algorithm is superior to SPIHT with the arithmetic coding in both lossy and lossless compression for all tested images.


Author(s):  
Martin Fleury ◽  
Ismail Ali ◽  
Nadia Qadri ◽  
Mohammed Ghanbari

Mobile devices are replacing the desktop computer in most spheres outside the workplace. This development brings a problem to video streaming services, as wireless channels are fundamentally error-prone, whereas video compression depends for most of its gains on predictive coding. The H.264 codec family has included a good number of error resilience facilities to counter-act the spatio-temporal error propagation brought on by packet loss. This chapter outlines these facilities before examining ways in which predictive coding can be temporally restrained. In particular, intra-refresh techniques are the focus, as these bring additional utility to the video stream. For example, the chapter compares periodic and gradual intra-refresh, each of which provides recovery points for the decoder and also allow stream switching or joining at these points. Thus, in intra-coding, the more normal temporal prediction is temporally replaced by spatial prediction, at a cost in coding efficiency but allowing a decoder in a mobile device to reset itself. After a review of research into this area, the chapter provides a case study in non-periodic intra-refresh before considering possible future research directions.


Sign in / Sign up

Export Citation Format

Share Document