Single snapshot imaging method in multiple‐input multiple‐output radar with sparse antenna array

2013 ◽  
Vol 7 (5) ◽  
pp. 535-543 ◽  
Author(s):  
Fufei Gu ◽  
Long Chi ◽  
Qun Zhang ◽  
Feng Zhu
2011 ◽  
Vol 20 (03) ◽  
pp. 515-529 ◽  
Author(s):  
CONSTANTINOS I. VOTIS ◽  
PANOS KOSTARAKIS ◽  
LEONIDAS P. IVRISSIMTZIS

The design of a multiple-output transmitter for digital beamforming (DBF), Multiple-Input Multiple-Output (MIMO) and channel sounder applications, based on Direct Digital Synthesis (DDS) system is presented and investigated in terms of antenna array performance. DDS generates independently modulated signals on specific carrier frequencies and is employed as the first stage in the proposed implementation, furnishing output signal of configurable amplitude, phase and frequency. The resulting phase progression, amplitude and beamforming accuracy of a beam steering array are further investigated, showing that the proposed architecture can provide a steering beam with high accuracy. Experimental results of system performance indicate that this architecture can drive efficiently and accurately an antenna array with independent modulated RF signals, with programmable frequency, initial phase, and magnitude.


Circuit World ◽  
2020 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Premalatha J. ◽  
Sheela D.

Purpose This paper aims to present the design of a compact vertically polarized four-element UWB antenna suitable for MIMO communications. Design/methodology/approach The unit cell antenna is constructed using a square ring radiator excited through a stepped impedance feed. The proposed antenna covers the Ultra-wideband (UWB) spectrum ranging from 2.2 to 12.3 GHz. The isolation between the unit cell antennas in the array is enhanced using a simple microstrip line resonator. The decoupling element is connected to the ground through a via. Findings The proposed scheme offers at least 16 dB improvement in the port-to-port coupling. Furthermore, the four-element antenna array is constructed using a specific interlocking scheme. The proposed antenna array’s Multiple Input Multiple Output (MIMO) performance metrics are analyzed. Originality/value By suitably selecting the excitation port, directional radiation patterns can be realized. The combined radiation pattern covers 360 degrees. A prototype antenna array is fabricated, and the simulation results are verified using real-time experiments. The proposed antenna is a suitable candidate for shark fin housing in automotive communications.


2015 ◽  
Vol 2015 ◽  
pp. 1-8 ◽  
Author(s):  
Tian Jin ◽  
Alexander Yarovoy

An image focusing method based on a realistic model for a wall is proposed for through-the-wall radar imaging using a multiple-input multiple-output array. A technique to estimate the wall parameters (i.e., position, thickness, and permittivity) from the radar returns is developed and tested. The estimated wall properties are used in the developed penetrating image formation to form images. The penetrating image formation developed is computationally efficient to realize real-time imaging, which does not depend on refraction points. The through-the-wall imaging method is validated on simulated and real data. It is shown that the proposed method provides high localization accuracy of targets concealed behind walls.


2010 ◽  
Vol 2 (3-4) ◽  
pp. 369-377 ◽  
Author(s):  
Timofey Savelyev ◽  
Xiaodong Zhuge ◽  
Bill Yang ◽  
Pascal Aubry ◽  
Alexander Yarovoy ◽  
...  

This paper presents an experimental investigation of two approaches to short-range radar imaging at microwaves by means of ultra-wideband (UWB) technology. The first approach represents a classical synthetic aperture radar (SAR) that employs a transmit–receive antenna pair on mechanical scanner. The second one makes use of a multiple input multiple output (MIMO) antenna array that scans electronically in the horizontal plane and mechanically, installed on the scanner, in the vertical plane. The mechanical scanning in only one direction reduces significantly the measurement time. Two respective prototypes have been built and compared. Both systems comprise the same 10–18 GHz antennas and multi-channel video impulse electronics while the same data processing and imaging method based on Kirchhoff migration is applied to acquired data for digital beamforming. The study has been done for an application of concealed weapon detection.


Sign in / Sign up

Export Citation Format

Share Document