Designing a complementary design rule checker based on a binary balanced quad list quad tree

1992 ◽  
Vol 139 (4) ◽  
pp. 311
Author(s):  
P.-Y. Hsiao ◽  
J.-T. Yan

2020 ◽  
Vol 6 (12) ◽  
pp. 2000770
Author(s):  
Hyejin Park ◽  
Junfeng Sun ◽  
Younsu Jung ◽  
Jinhwa Park ◽  
Bijendra Bishow Maskey ◽  
...  


2020 ◽  
Vol 6 (12) ◽  
pp. 2070051
Author(s):  
Hyejin Park ◽  
Junfeng Sun ◽  
Younsu Jung ◽  
Jinhwa Park ◽  
Bijendra Bishow Maskey ◽  
...  


2020 ◽  
Vol 27 (1) ◽  
pp. 29-38
Author(s):  
Teng Zhang ◽  
Junsheng Ren ◽  
Lu Liu

AbstractA three-dimensional (3D) time-domain method is developed to predict ship motions in waves. To evaluate the Froude-Krylov (F-K) forces and hydrostatic forces under the instantaneous incident wave profile, an adaptive mesh technique based on a quad-tree subdivision is adopted to generate instantaneous wet meshes for ship. For quadrilateral panels under both mean free surface and instantaneous incident wave profiles, Froude-Krylov forces and hydrostatic forces are computed by analytical exact pressure integration expressions, allowing for considerably coarse meshes without loss of accuracy. And for quadrilateral panels interacting with the wave profile, F-K and hydrostatic forces are evaluated following a quad-tree subdivision. The transient free surface Green function (TFSGF) is essential to evaluate radiation and diffraction forces based on linear theory. To reduce the numerical error due to unclear partition, a precise integration method is applied to solve the TFSGF in the partition computation time domain. Computations are carried out for a Wigley hull form and S175 container ship, and the results show good agreement with both experimental results and published results.



Author(s):  
DongKwon Jeong ◽  
JuHyeon Ahn ◽  
SangIn Lee ◽  
JooHyuk Chung ◽  
ByungLyul Park ◽  
...  

Abstract This paper presents the problems, the solutions, and the development state of the novel 0.18 μm Cu Metal Process through failure analysis of the Alpha CPU under development at Samsung Electronics. The presented problems include : “Via Bottom Lifting” induced by the Cu Via void, “Via Bottom dissociation” due to the IMD stress, “Via side dissociation” due to the poor formation of the Barrier Metal, “Via short/not-open failure” due to the IMD lifting, and Cu metal Corrosion/Loss. The analysis was carried out on the Via Contact Test Chain Patterns, using the “Electron (ION) Charge Up” method. After carefully analyzing each of the failure types, process improvement efforts followed. As a result, the pass rate of the via contact Rc was brought up from a mere 20% to 95%, and the device speed higher than 1.1 GHz was achieved, which surpasses the target speed of 1 GHz.



2020 ◽  
Vol 96 (3s) ◽  
pp. 721-725
Author(s):  
Ф.С. Золотухин ◽  
А.С. Надин ◽  
И.Е. Трифанихина

Разработан прототип программного модуля генератора квалификационных ячеек для автоматизированного контроля геометрических правил проектирования DRC. Проведено тестирование прототипа генератора в реальных рабочих условиях проектирования. The paper presents a prototype of software module of the QA-cells Generator for automated Design Rule Checking. The QA-Cells Generator has been tested in the real workplace within actual microelectronic industrial design.



Author(s):  
Grace L. Samson ◽  
Joan Lu

AbstractWe present a new detection method for color-based object detection, which can improve the performance of learning procedures in terms of speed, accuracy, and efficiency, using spatial inference, and algorithm. We applied the model to human skin detection from an image; however, the method can also work for other machine learning tasks involving image pixels. We propose (1) an improved RGB/HSL human skin color threshold to tackle darker human skin color detection problem. (2), we also present a new rule-based fast algorithm (packed k-dimensional tree --- PKT) that depends on an improved spatial structure for human skin/face detection from colored 2D images. We also implemented a novel packed quad-tree (PQT) to speed up the quad-tree performance in terms of indexing. We compared the proposed system to traditional pixel-by-pixel (PBP)/pixel-wise (PW) operation, and quadtree based procedures. The results show that our proposed spatial structure performs better (with a very low false hit rate, very high precision, and accuracy rate) than most state-of-the-art models.





Nanomaterials ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 586
Author(s):  
Chen-Yi Yu ◽  
Qiu-Chun Zeng ◽  
Chih-Jen Yu ◽  
Chien-Yuan Han ◽  
Chih-Ming Wang

In this study, the phase modulation ability of a dielectric Pancharatnam–Berry (PB) phase metasurface, consisting of nanofins, is theoretically analyzed. It is generally considered that the optical thickness of the unit cell of a PB-phase metasurface is λ/2, i.e., a half-waveplate for polarization conversion. It is found that the λ/2 is not essential for achieving a full 2π modulation. Nevertheless, a λ/2 thickness is still needed for a high polarization conversion efficiency. Moreover, a gradient phase metasurface is designed. With the help of the particle swarm optimization (PSO) method, the wavefront errors of the gradient phase metasurface are reduced by fine-tuning the rotation angle of the nanofins. The diffraction efficiency of the gradient phase metasurface is thus improved from 73.4% to 87.3%. This design rule can be utilized to optimize the efficiency of phase-type meta-devices, such as meta-deflectors and metalenses.



Author(s):  
Luis Francisco ◽  
Tanmay Lagare ◽  
Arpit Jain ◽  
Somal Chaudhary ◽  
Madhura Kulkarni ◽  
...  


2021 ◽  
Vol 52 (1) ◽  
pp. 1448-1451
Author(s):  
Xuefei Sun ◽  
Jaegeon You ◽  
Xinxing Wang ◽  
Liyan Liu ◽  
Yingtao Wang ◽  
...  


Sign in / Sign up

Export Citation Format

Share Document