corrosion loss
Recently Published Documents


TOTAL DOCUMENTS

40
(FIVE YEARS 9)

H-INDEX

8
(FIVE YEARS 1)

CORROSION ◽  
10.5006/3967 ◽  
2021 ◽  
Author(s):  
Robert Melchers

Marine immersion corrosion observations for archaeological and other data, including from shipwrecks, wrought iron anchors and cast iron bridge piers are used to estimate corrosion losses in natural unpolluted coastal and near-coastal seawaters for exposures up to about 600 years. Empirical functions for the development of corrosion loss with time were then developed, standardized to 20˚C mean seawater temperature. The resulting slightly non-linear corrosion loss trend, represented by a modified form of the power law, is consistent with Phase 4 of the previously proposed bi-modal corrosion model. These observations support the notion that the rate of long-term corrosion is controlled by outward diffusion, through the rust layers, of gaseous hydrogen generated by the cathodic hydrogen evolution reaction under predominantly anaerobic corrosion conditions. The power-law trend also provides good extrapolation from shorter- term data. For practical purposes for exposures < 100 years in seawaters with mean temperature around 20˚C, a linear model, with longer-term corrosion rate 0.06 mm/y at 20˚C, is sufficiently accurate.


Materials ◽  
2021 ◽  
Vol 14 (19) ◽  
pp. 5766
Author(s):  
Przemysław Fiołek ◽  
Jacek Jakubowski

The steel constructions of mine shaft steelwork are particularly exposed to aggressive environments, which cause large, nonuniform corrosion loss throughout the steel members. A correct assessment of corrosion loss and load-carrying capacity of shaft steelwork is crucial for its maintenance and safe operation. In this article, we present the results of laboratory, numerical, and analytical investigations conducted on naturally corroded steel guides disassembled from shaft steelwork. The steel guides considered had a closed profile formed by welding two hot-rolled channel sections. Laboratory bending tests were carried out on beams with various levels of corrosion loss, corresponding to compact, non-compact, and slender cross sections. Multiple detailed measurements of the thicknesses of naturally corroded walls were used in order to reproduce their nonuniform geometry in finite element (FE) models. The results of numerical simulations of five bending tests showed good agreement with laboratory measurements and replicated the observed failure modes, therefore confirming the applicability of this modeling approach for assessing the moment capacity of highly corroded steel beams when the deteriorated geometry is known. For the purpose of generalization, a series of derived models reflecting the natural corrosion pattern was then developed, and moment capacity statistics were collected through multiple simulations. They showed that the mean moment capacity is determined by the mean wall thickness. However, the minimum moment capacity is strongly affected by corrosion loss variation, particularly for the highly corroded beams. A simplified, analytical modeling approach was also examined, providing fairly good assessments of the mean; however, the minimum moment capacity could not be estimated. This study contributes to the body of knowledge on the mechanical behavior of highly corroded hot-rolled box-section beams.


Heritage ◽  
2021 ◽  
Vol 4 (3) ◽  
pp. 2377-2389
Author(s):  
David Thickett

The altered nature of archaeological metals means they deteriorate at much lower relative humidity (RH) conditions than historical metals. The study of deterioration for such materials is hampered by their complexity, variability and difficulties in measuring deterioration. Placing an object in a sealed container, controlling the RH and pollutant gases and measuring any decrease in oxygen concentration is an accessible method to measure the deterioration rate. It has been used for research into suitable environmental conditions to manage the deterioration rates of such artefacts, including the differences in the response of artefacts from different excavation sites. Some objects need the careful control of RH to low values; this is expensive to maintain and poses risks to other artefacts displayed together. Many objects are actually stable up to quite high RH values, and oxygen depletion testing has been used to identify those that can be safely displayed with minimal environmental control. The accelerated corrosion ‘Oddy’ test is frequently used to sift out unsuitable display materials. T the visual assessment is widely recognized to be subjective. the test container has been modified and oxygen depletion appears to give good quantitative measurements of corrosion that correspond with both visual comparison and corrosion loss measurement with linear stripping voltametry or chemical stripping for copper, lead and steel but not for silver.


Materials ◽  
2021 ◽  
Vol 14 (14) ◽  
pp. 3906
Author(s):  
Marta Terrados-Cristos ◽  
Francisco Ortega-Fernández ◽  
Guillermo Alonso-Iglesias ◽  
Marina Díaz-Piloneta ◽  
Ana Fernández-Iglesias

Galvanised steel atmospheric corrosion is a complex multifactorial phenomenon that globally affects many structures, equipment, and sectors. Moreover, the International Organization of Standardization (ISO) standards require specific pollutant depositions values for any atmosphere classification or corrosion loss prediction result. The aim of this research is to develop predictive models to estimate corrosion loss based on easily worldwide available parameters. Experimental data from internationally validated studies were used for the data mining process, basing their characterisation on seven globally accessible qualitative and quantitative variables. Self-Organising Maps including both supervised and unsupervised layers were used to predict first-year corrosion loss, its corrosivity categories, and an uncertainty range. Additionally, a formula optimised with Newton’s method has been proposed for extrapolating these results to long-term results. The predictions obtained were compared with real values using Euclidean distances to know its similarity degree, offering high prediction performance. Specifically, evaluation results showed an average saving of up to 16% in coatings using these predictions. Therefore, using the proposed models reduces the uncertainty of the final structures state by predicting their material loss, avoiding initial over-dimensioning of structures, and meeting the principles of efficiency and sustainability, thus reducing costs.


Sensors ◽  
2021 ◽  
Vol 21 (7) ◽  
pp. 2546
Author(s):  
Takashi Miwa

It is well known that evaluation of rebar corrosion is important for the maintenance of reinforced concrete structures, but, it is difficult to simply, quickly and quantitatively evaluate the amount of corrosion of rebars embedded in concrete by conventional non-destructive evaluation (NDE) methods such as electrical, electromagnetic and mechanical method. This paper proposes a vibro-Doppler radar (VDR) measurement method to quantitatively evaluate rebar corrosion by measuring the vibration ability of the rebar forcibly vibrated in concrete by an excitation coil. It is experimentally demonstrated in RC test pieces that the rebar vibration displacement obtained by developed VDR method is valid and is less affected by the moisture in the concrete. In addition, simultaneous monitoring of the rebar vibration displacement of the test pieces is performed through an electrolytic corrosion test and the measured vibration displacement is compared to the rebar corrosion loss evaluated. As the results, it is cleared that the rebar vibration displacement starts to increase from slightly before the occurrences of corrosion crack on the concrete surface as the corrosion loss increases. It is also shown that the rebar vibration displacement becomes 4 times higher than that in initial condition at the rebar corrosion loss of 250 mg/cm2. This implies that the VDR has potential to nondestructively and quantitatively evaluate rebar corrosion in concrete.


Author(s):  
Graham Gedge ◽  
Bruna Frydman

<p>Road side environments exposed to de-icing salts do not readily fall within any of the qualitative assessment categories commonly used in ISO 9223 to define corrosion risk. The potential impact of seasonal use of de-icing salts complicates the definition of the environment and may increase corrosion rates. It is therefore common within highways authorities to assume the environment is comparable to a marine splash zone, C5 environment of ISO 9223, equating to a high corrosion loss for 120-year design life. In the absence of data this may be an understandable, if conservative, assumption. This paper challenges this assumption and presents a detailed case study for sheet piling adjacent to highways, exploring the benefits of a quantitative assessment using the Dose Response Function methodology given in ISO 9223 and calculation of long-term loss in accordance with ISO 9224. The method allows better definition of the service environment and results in more modest assessment of total corrosion loss. The assessed corrosion loss from this methodology is compared with the results obtained from the recovery and analysis of long-term exposure samples from the English trunk road network. The range of total corrosion loss of the mild steel samples recovered, fall within the range predicted by the analysis using the methodology described in ISO 9223 and ISO 9224 over the exposure period.</p>


2020 ◽  
Vol 86 (5) ◽  
pp. 31-36
Author(s):  
V. F. Novikov ◽  
K. R. Muratov ◽  
R. A. Sokolov ◽  
V. P. Ustinov

An innovative method of measuring and control of the steel corrosion rate by changing magnetic characteristics is developed. The impact of heat treatment on the corrosion rate of the samples of high-carbon steels (maximum corrosion loss is observed at a tempering temperature of 400°C) is attributed to the appearance of micro-galvanic pairs (MGP) between the phase components of the material. MGP undergo redistribution under heat treatment thus changing conditions of the galvanic current flow. The structural phase composition, in turn, determines the magnetic properties of steel and correlation between the magnetic properties and corrosiveness. The goal of the study is demonstration of the possibility and expediency of using the magnetic parameters of steel for determination of the steel corrosion rate. A close correlation dependence is observed between the coercive force and the electrochemical potential (relative to the silver chloride electrode) which are direct indicators of the corrosiveness. Case study of a pipeline made of 09G2S steel along which change in the coercive force attained 25% revealed rather high risk of developing micro-galvanic pairs. A rapid method of scanning magnetic parameters is proposed to detect potentially corrosive zones. A multi-parameter approach can be used to solve the problem of the ambiguity of the relationship between the corrosiveness and magnetic parameters. Harmonic decomposition of magnetic hysteresis loops of 45Kh steel samples is used to obtain a number of odd harmonics. Some of them weakly correlate with the corrosion loss, whereas complexes of several harmonics correlate to a greater extent. The results can be used in technical diagnostics and prediction of the corrosion activity of steel structures before their operation. The results can be used in technical diagnostics and forecasting of the corrosiveness of steel structures prior to their operation.


Author(s):  
Xuhui Zhang ◽  
Bowen Liu ◽  
Wei Zhang ◽  
Qiuchi Chen ◽  
Caiqian Yang

<p>Corrosion-induced concrete spalling damage and its effects on shear behavior of RC beams are investigated in the present study. An experimental test is proposed firstly to investigate the cracking and spalling of concrete covers induced by corrosion. Then, the effects of concrete spalling damage on shear capacity are clarified. Following, a simple model is proposed to quantify the section damage of concrete. And, a FE method is proposed to predict the shear behavior by considering the concrete spalling damage and bond degradation. Results show that steel corrosion induces firstly the cracking of concrete and then the spalling of concrete as the corrosion loss exceeds about 20%. The spalling angles is found to vary from 17° to 22° in present test. The slight corrosion loss less than 10% in stirrups and inclined bars has little effect on the degradation of shear capacity. The further corroded stirrups and inclined bars, and the accompanied concrete spalling damage decreases the shear capacity significantly. The proposed FE model by considering corrosion-induced steel area loss, concrete spalling damage and bond degradation has reasonable accuracy for shear behavior prediction of beams.</p>


Author(s):  
Hossein Gholami ◽  
Behrouz Asgarian ◽  
Saeed Asil Gharebaghi

Corrosion is identified as one of the most important deterioration factors for structural integrity of offshore platforms. For reliability analysis of these platforms, a probabilistic model for prediction of long-term corrosion loss as a function of time is essential. The purpose of this study is to propose a novel model for steel corrosion of jacket platforms in the Persian Gulf region. Field measurements for members in seawater are collected and statistically analyzed to identify the probability function for corrosion loss at different times. A new probabilistic model with time-dependent parameters is suggested, based on the statistical analysis results. Application of above-mentioned model in the reliability analysis of jacket platforms is investigated by introducing a new reliability analysis framework. This framework is a general solution for probabilistic analysis of jacket platforms with several stochastic variables which can be used for the platforms with different configuration and loads. In this framework, direct analysis is performed in each stage of first-order reliability method (FORM) instead of using the response surface method which is a common approach to obtaining the required response. This framework is applied to three jackets and the annual probability of failure (Pf) over the platforms service life is computed. Comparison of results revealed that among the years beyond the platform design life, the amount of annual Pf is increased in parabolic function. Also, studying the results is illustrated that in the case of ignoring the corrosion loss as a stochastic variable, Pf is estimated 7% lower than values obtained in actual condition.


Sign in / Sign up

Export Citation Format

Share Document