scholarly journals Experimental analyses of two‐body wave energy converters with hydraulic power take‐off damping in regular and irregular waves

Author(s):  
Shuang Wu ◽  
Yanjun Liu ◽  
Jian Qin
Author(s):  
Jørgen Hals ◽  
Johannes Falnes ◽  
Torgeir Moan

Wave-energy converters of the point-absorbing type (i.e., having small extension compared with the wavelength) are promising for achieving cost reductions and design improvements because of a high power-to-volume ratio and better possibilities for mass production of components and devices as compared with larger converter units. However, their frequency response tends to be narrow banded, which means that the performance in real seas (irregular waves) will be poor unless their motion is actively controlled. Only then the invested equipment can be fully exploited, bringing down the overall energy cost. In this work various control methods for point-absorbing devices are reviewed, and a representative selection of methods is investigated by numerical simulation in irregular waves, based on an idealized example of a heaving semisubmerged sphere. Methods include velocity-proportional control, approximate complex conjugated control, approximate optimal velocity tracking, phase control by latching and clutching, and model-predictive control, all assuming a wave pressure measurement as the only external input to the controller. The methods are applied for a single-degree-of-freedom heaving buoy. Suggestions are given on how to implement the controllers, including how to tune control parameters and handle amplitude constraints. Based on simulation results, comparisons are made on absorbed power, reactive power flow, peak-to-average power ratios, and implementation complexity. Identified strengths and weaknesses of each method are highlighted and explored. It is found that overall improvements in average absorbed power of about 100–330% are achieved for the investigated controllers as compared with a control strategy with velocity-proportional machinery force. One interesting finding is the low peak-to-average ratios resulting from clutching control for wave periods about 1.5 times the resonance period and above.


Author(s):  
Jørgen Hals ◽  
Johannes Falnes ◽  
Torgeir Moan

The question of optimal operation of wave-energy converters has been a key issue since modern research on the topic emerged in the early 1970s, and criteria for maximum wave-energy absorption soon emerged from frequency domain analysis. However, constraints on motions and forces give the need for time-domain modeling, where numerical optimization must be used to exploit the full absorption potential of an installed converter. A heaving, semisubmerged sphere is used to study optimal constrained motion of wave-energy converters. Based on a linear model of the wave-body interactions, a procedure for the optimization of the machinery force is developed and demonstrated. Moreover, a model-predictive controller is defined and tested for irregular sea. It repeatedly solves the optimization problem online in order to compute the optimal constrained machinery force on a receding horizon. The wave excitation force is predicted by use of an augmented Kalman filter based on a damped harmonic oscillator model of the wave process. It is shown how constraints influence the optimal motion of the heaving wave-energy converter, and also how close it is possible to approach previously published theoretical upper bounds. The model-predictive controller is found to perform close to optimum in irregular waves, depending on the quality of the wave force predictions. An absorbed power equal to or larger than 90% of the ideal constrained optimum is achieved for a chosen range of realistic sea states. Under certain circumstances, the optimal wave-energy absorption may be better in irregular waves than for a corresponding regular wave having the same energy period and wave-power level. An argument is presented to explain this observation.


2015 ◽  
Vol 96 ◽  
pp. 86-99 ◽  
Author(s):  
R.P.F. Gomes ◽  
M.F.P. Lopes ◽  
J.C.C. Henriques ◽  
L.M.C. Gato ◽  
A.F.O. Falcão

2020 ◽  
Vol 3 (3) ◽  
pp. 137-143
Author(s):  
Bret Bosma ◽  
Ted Brekken ◽  
Pedro Lomonaco ◽  
Bryony DuPont ◽  
Chris Sharp ◽  
...  

If wave energy technology is to mature to commercial success, array optimization could play a key role in that process. This paper outlines physical and numerical modeling of an array of five oscillating water column wave energy converters. Numerical model simulations are compared with experimental tank test data for a non-optimal and optimal array layout. Results show a max increase of 12% in average power for regular waves, and 7% for irregular waves between the non-optimized and optimized layouts. The numerical model matches well under many conditions; however, improvement is needed to adjust for phase errors. This paper outlines the process of numerical and physical array testing, providing methodology and results helpful for researchers and developers working with wave energy converter arrays.


2016 ◽  
Vol 97 ◽  
pp. 769-783 ◽  
Author(s):  
José F. Gaspar ◽  
Mojtaba Kamarlouei ◽  
Ashank Sinha ◽  
Haitong Xu ◽  
Miguel Calvário ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document