scholarly journals Array modeling and testing of fixed OWC type Wave Energy Converters

2020 ◽  
Vol 3 (3) ◽  
pp. 137-143
Author(s):  
Bret Bosma ◽  
Ted Brekken ◽  
Pedro Lomonaco ◽  
Bryony DuPont ◽  
Chris Sharp ◽  
...  

If wave energy technology is to mature to commercial success, array optimization could play a key role in that process. This paper outlines physical and numerical modeling of an array of five oscillating water column wave energy converters. Numerical model simulations are compared with experimental tank test data for a non-optimal and optimal array layout. Results show a max increase of 12% in average power for regular waves, and 7% for irregular waves between the non-optimized and optimized layouts. The numerical model matches well under many conditions; however, improvement is needed to adjust for phase errors. This paper outlines the process of numerical and physical array testing, providing methodology and results helpful for researchers and developers working with wave energy converter arrays.

Author(s):  
Jørgen Hals ◽  
Johannes Falnes ◽  
Torgeir Moan

Wave-energy converters of the point-absorbing type (i.e., having small extension compared with the wavelength) are promising for achieving cost reductions and design improvements because of a high power-to-volume ratio and better possibilities for mass production of components and devices as compared with larger converter units. However, their frequency response tends to be narrow banded, which means that the performance in real seas (irregular waves) will be poor unless their motion is actively controlled. Only then the invested equipment can be fully exploited, bringing down the overall energy cost. In this work various control methods for point-absorbing devices are reviewed, and a representative selection of methods is investigated by numerical simulation in irregular waves, based on an idealized example of a heaving semisubmerged sphere. Methods include velocity-proportional control, approximate complex conjugated control, approximate optimal velocity tracking, phase control by latching and clutching, and model-predictive control, all assuming a wave pressure measurement as the only external input to the controller. The methods are applied for a single-degree-of-freedom heaving buoy. Suggestions are given on how to implement the controllers, including how to tune control parameters and handle amplitude constraints. Based on simulation results, comparisons are made on absorbed power, reactive power flow, peak-to-average power ratios, and implementation complexity. Identified strengths and weaknesses of each method are highlighted and explored. It is found that overall improvements in average absorbed power of about 100–330% are achieved for the investigated controllers as compared with a control strategy with velocity-proportional machinery force. One interesting finding is the low peak-to-average ratios resulting from clutching control for wave periods about 1.5 times the resonance period and above.


Energies ◽  
2021 ◽  
Vol 14 (1) ◽  
pp. 225
Author(s):  
Constantine Michailides

During the past years, researchers have studied both numerically and experimentally multibody wave-wind combined energy structures supporting wind turbines and different types of Wave Energy Converters (WECs); rigid body hydrodynamic assumptions have been adopted so far for the development of their numerical models and the assessment of their produced power. In the present paper a numerical model that is based on the use of generalized modes addressing wave-structure interaction effects for the case of a multibody wave-wind combined structure is developed and presented. Afterwards, the developed numerical model is used for the assessment of the hydrodynamic response and the prediction of the produced power of different possible configurations of the updated WindWEC concept which consists of a spar supporting a wind turbine and one, two, three or four heaving type WEC buoys. The combined effects of the center-to-center distance of the WEC and spar platform, the number of the WECs and the grid configuration of spar and WECs on the hydrodynamic interaction between the different floating bodies, spar and WEC buoys, and consequently on their response and wave power production are examined for regular and irregular waves. Strong hydrodynamic interaction effects exist for small distance between spar and WECs that result to the decrease of the produced power. Power matrices of the updated WindWEC concept are presented for all examined configurations with different number of WECs. Moreover, the annual produced power of the updated WindWEC in two sites is estimated and presented. The generalized modes analysis presented in this paper is generic and can be used for the early stage assessment of wave-wind combined energy structures with low computational cost. The updated WindWEC can be used in sea sites with different environmental characteristics while extracting valuable amount of wave power.


Author(s):  
Andrew S. Zurkinden ◽  
Morten Kramer ◽  
Mahdi Teimouri Teimouri ◽  
Marco Alves

Currently, a number of wave energy converters are being analyzed by means of numerical models in order to predict the electrical power generation under given wave conditions. A common characteristic of this procedure is to integrate the loadings from the hydrodynamics, power take-off and mooring systems into a central wave to wire model. The power production then depends on the control strategy which is applied to the device. The objective of this paper is to develop numerical methods for motion analysis of marine structures with a special emphasis on wave energy converters. Two different time domain models are applied to a point absorber system working in pitch mode only. The device is similar to the well-known Wavestar prototype located in the Danish North Sea. A laboratory model has been set up in order to validate the numerical simulations of the dynamics. Wave Excitation force and the response of the device for regular and irregular waves were measured. Good correspondence is found between the numerical and the physical model for relatively mild wave conditions. For higher waves the numerical model seems to underestimate the response of the device due to its linear fluid-structure interaction assumption and linearized equation of motion. The region over which the numerical model is valid will be presented in terms of non-dimensional parameters describing the different wave states.


2015 ◽  
Vol 104 ◽  
pp. 370-386 ◽  
Author(s):  
Scott J. Beatty ◽  
Matthew Hall ◽  
Bradley J. Buckham ◽  
Peter Wild ◽  
Bryce Bocking

Author(s):  
Matt Folley ◽  
Trevor Whittaker

The development of wave energy for utility-scale electricity production requires an understanding of how wave energy converters will interact with each other when part of a wave farm. Without this understanding it is difficult to calculate the energy yield from a wave farm and consequently the optimal wave farm layout and configuration cannot be determined. In addition, the uncertainty in a wave farm’s energy yield will increase the cost of finance for the project, which ultimately increases the cost of energy. Numerical modelling of wave energy converter arrays, based on potential flow, has provided some initial indications of the strength of array interactions and optimal array configurations; however, there has been limited validation of these numerical models. Moreover, the cross-validation that has been completed has been for relatively small arrays of wave energy converters. To provide some validation for large array interactions wave basin testing of three different configurations of up to 24 wave energy converters has been completed. All tests used polychromatic (irregular) sea-states, with a range of long-crested and short-crested seas, to provide validation in realistic conditions. The physical model array interactions are compared to those predicted by a numerical model and the suitability of the numerical and physical models analysed. The results are analysed at three different levels and all provide support for the cross-validation of the two models. The differences between the physical and numerical model are also identified and the implications for improving the modelling discussed.


Author(s):  
Jørgen Hals ◽  
Johannes Falnes ◽  
Torgeir Moan

The question of optimal operation of wave-energy converters has been a key issue since modern research on the topic emerged in the early 1970s, and criteria for maximum wave-energy absorption soon emerged from frequency domain analysis. However, constraints on motions and forces give the need for time-domain modeling, where numerical optimization must be used to exploit the full absorption potential of an installed converter. A heaving, semisubmerged sphere is used to study optimal constrained motion of wave-energy converters. Based on a linear model of the wave-body interactions, a procedure for the optimization of the machinery force is developed and demonstrated. Moreover, a model-predictive controller is defined and tested for irregular sea. It repeatedly solves the optimization problem online in order to compute the optimal constrained machinery force on a receding horizon. The wave excitation force is predicted by use of an augmented Kalman filter based on a damped harmonic oscillator model of the wave process. It is shown how constraints influence the optimal motion of the heaving wave-energy converter, and also how close it is possible to approach previously published theoretical upper bounds. The model-predictive controller is found to perform close to optimum in irregular waves, depending on the quality of the wave force predictions. An absorbed power equal to or larger than 90% of the ideal constrained optimum is achieved for a chosen range of realistic sea states. Under certain circumstances, the optimal wave-energy absorption may be better in irregular waves than for a corresponding regular wave having the same energy period and wave-power level. An argument is presented to explain this observation.


2015 ◽  
Vol 96 ◽  
pp. 86-99 ◽  
Author(s):  
R.P.F. Gomes ◽  
M.F.P. Lopes ◽  
J.C.C. Henriques ◽  
L.M.C. Gato ◽  
A.F.O. Falcão

Sign in / Sign up

Export Citation Format

Share Document