scholarly journals Polarimetric imaging of circumstellar disks

2019 ◽  
Vol 627 ◽  
pp. A156
Author(s):  
S. Heikamp ◽  
C. U. Keller

Context. Polarimetric images of circumstellar environments, even when corrected with adaptive optics, have a limited angular resolution. Finite resolution greatly affects polarimetric images because of the canceling of adjacent polarization signals with opposite signs. In radio astronomy this effect is called beam depolarization and is well known. However, radio techniques to mitigate beam depolarization are not directly applicable to optical images as a consequence of the inherent lack of phase information at optical wavelengths. Aims. We explore the effects of a finite point-spread function (PSF) on polarimetric images and the application of Richardson-Lucy deconvolution to polarimetric images. Methods. We simulated polarimetric images of highly simplified, circumstellar disk models and convolved these with simulated and actual SPHERE/ZIMPOL PSFs. We attempted to deconvolve simulated images in orthogonal linear polarizations and polarized intensity images. Results. The most significant effect of finite angular resolution is the loss of polarimetric signal close to the central star where large polarization signals of opposite signs average out. The finite angular resolution can also introduce polarized light in areas beyond the original, polarized signal such as outside of disks. These effects are particularly severe for disks that are not rotationally symmetric. The deconvolution of polarimetric images is far from trivial. Richardson-Lucy deconvolution applied to images in opposite linear polarization states, which are subsequently subtracted from each other, cannot recover the signal close to the star. Sources that lack rotational symmetry cannot be recovered with this deconvolution approach.

2018 ◽  
Vol 56 (1) ◽  
pp. 315-355 ◽  
Author(s):  
Olivier Guyon

Over the last two decades, several thousand exoplanets have been identified, and their study has become a high scientific priority. Direct imaging of nearby exoplanets and the circumstellar disks in which they form and evolve is challenging due to the high contrast ratio and small angular separation relative to the central star. Exoplanets are typically within 1 arcsec of, and between 4 and 10 orders of magnitude fainter than, the stars they orbit. To meet these challenges, ground-based telescopes must be equipped with extreme adaptive optics (ExAO) systems optimized to acquire high-contrast images of the immediate surrounding of nearby bright stars. Current ExAO systems have the sensitivity to image thermal emission from young massive planets in near-IR, while future systems deployed on Giant Segmented Mirror Telescopes will image starlight reflected by lower-mass rocky planets. Thanks to rapid progress in optical coronagraphy, wavefront control, and data analysis techniques, direct imaging and spectroscopic characterization of habitable exoplanets will be within reach of the next generation of large ground-based telescopes.


2004 ◽  
Vol 221 ◽  
pp. 307-312
Author(s):  
Dániel Apai ◽  
Ilaria Pascucci ◽  
Hongchi Wang ◽  
Wolfgang Brandner ◽  
Thomas Henning ◽  
...  

We present results from our high-resolution, high-contrast imaging campaign targeting the circumstellar environments of young, nearby stars of different masses. The observations have been conducted using the ALFA/CA 3.5m and NACO UT4/VLT adaptive optics systems. In order to enhance the contrast we applied the methods PSF-subtraction and polarimetric differential imaging (PDI). The observations of young stars yielded the identification of numerous new companion candidates, the most interesting one being ∼ 0.5″ from FU Ori. We also obtained high-resolution near-infrared imaging of the circumstellar envelope of SU Aur and AB Aur. Our PDI of the TW Hya circumstellar disk traced back the disk emission as close as 0.1″ ≃ 6 AU from the star, the closest yet. Our results demonstrate the potential of the adaptive optics systems in achieving high-resolution and high-contrast imaging and thus in the study of circumstellar disks, envelopes and companions.


2014 ◽  
Vol 9 (S307) ◽  
pp. 453-454
Author(s):  
F. Navarete ◽  
A. Damineli ◽  
C. L. Barbosa ◽  
R. D. Blum

AbstractFormation of massive stars (M > 8 M⊙) is still not well understood and lacks of observational constraints. We observed 7 MYSO candidates using the NIFS spectrometer at Gemini North Telescope to study the accretion process at high angular resolution (~ 50 mas) and very closer to the central star. Preliminary results for 2 sources have revealed circumstellar structures traced by Brackett-Gamma, CO lines and extended H2 emission. Both sources present kinematics in the CO absorption lines, suggesting rotating structures. The next step will derive the central mass of each source by applying a keplerian model for these CO features.


2017 ◽  
Vol 95 (9) ◽  
pp. 847-854 ◽  
Author(s):  
P.G. Judge

Major outstanding problems in solar physics relate to solar magnetism. Spectropolarimetry offers the best, and sometimes only, method of obtaining accurate measurements of the Sun’s magnetic field. New 1.5–2 m class telescopes with adaptive optics have come on line, and the Daniel K. Inouye 4 m Solar Telescope (DKIST) will begin observing in 2019. The calibration of polarized light entering such a large and polarizing ground-based telescope represents difficult challenges. This paper explores how special polarization properties of particular atomic transitions may provide calibration data, augmenting or even avoiding time-consuming calibration observations, as well as science data. This initial study concludes that solar spectral lines exist with special polarization properties, allowing the telescope calibration to be determined. The Sun’s visible and infrared spectrum is dominated by lines of neutral atoms and singly charged ions of iron and other complex atoms. Both solar and atomic physics should jointly benefit from telescopic advances, as observers explore regimes of broader wavelength ranges, and higher spatial resolutions and polarimetric sensitivities, than they have reached in the past. Further work is in progress to identify particular transitions of practical use to aid in calibrations.


2004 ◽  
Vol 219 ◽  
pp. 385-389 ◽  
Author(s):  
Inga Kamp ◽  
Fatima Sammar

The chemistry of circumstellar disks around young (a few 10 Myr) solar-type stars is mainly driven by the strong UV radiation field of the central star. As a starting point for a detailed UV radiation field, the rocket and satellite observations of the solar chromosphere are used and scaled according to the time-dependent behaviour of stellar activity. The disk chemistry as well as dust and gas temperatures are then derived self-consistently from the model. The results of these calculations can be used for the identification of the most promising gas tracers as well as for the interpretation of present and future observations.


2004 ◽  
Vol 221 ◽  
pp. 417-424 ◽  
Author(s):  
Michihiro Takami ◽  
Jeremy Bailey ◽  
Antonio Chrysostomou ◽  
Motohide Tamura ◽  
Hiroshi Terada

The circumstellar environment within 10 AU of young stars are of particular interest for star and planet formation. Unfortunately, present imaging facilities such as the Hubble Space Telescope or adaptive optics on 10-m telescopes cannot resolve this region. We have proved that “spectro-astrometry” is a powerful technique for discovering pre-main-sequence binaries, determining kinematics of outflows and providing evidence for gaps in circumstellar disks — all down to AU scales. In this paper, we summarise our progress to date.


2008 ◽  
Author(s):  
Charlotte Feldman ◽  
Richard Willingale ◽  
Carolyn Atkins ◽  
Hongchang Wang ◽  
Peter Doel ◽  
...  

2010 ◽  
Vol 6 (S272) ◽  
pp. 325-336 ◽  
Author(s):  
Alex C. Carciofi

AbstractCircumstellar discs of Be stars are thought to be formed from material ejected from a fast-spinning central star. This material possesses large amounts of angular momentum and settles in a quasi-Keplerian orbit around the star. This simple description outlines the basic issues that a successful disc theory must address: 1) What is the mechanism responsible for the mass ejection? 2) What is the final configuration of the material? 3) How the disc grows? With the very high angular resolution that can be achieved with modern interferometers operating in the optical and infrared we can now resolve the photosphere and immediate vicinity of nearby Be stars. Those observations are able to provide very stringent tests for our ideas about the physical processes operating in those objects. This paper discusses the basic hydrodynamics of viscous decretion discs around Be stars. The model predictions are quantitatively compared to observations, demonstrating that the viscous decretion scenario is currently the most viable theory to explain the discs around Be stars.


1992 ◽  
Vol 9 ◽  
pp. 377-380
Author(s):  
L. Hartmann ◽  
M. Gomez ◽  
S.J. Kenyon

Results from the IRAS satellite showed that many pre-main sequence stars exhibited unexpectedly large fluxes in the infrared spectral region. Several studies have shown that the simplest and most satisfying explanation of this excess emission is that it arises in optically-thick, dusty, circumstellar disks (Rucinski 1985; Adams, Lada, and Shu 1987, 1988; Kenyon and Hartmann 1987; Bertout, Basri, and Bouvier 1988; Basri and Bertout 1989). The masses of these disks are estimated to range between 10-3M⊙ to 1M⊙ (Beckwith et al. 1990; Adams et al. 1990), large enough that disk accretion may have a significant effect on the evolution of the central star. Indeed, Mercer-Smith, Cameron, and Epstein (1984) suggested that stars are essentially completely accreted from disks, rather than formed from quasi-spherical accretion (Stabler 1983, 1988).


2020 ◽  
Vol 638 ◽  
pp. A98
Author(s):  
F. Cantalloube ◽  
O. J. D. Farley ◽  
J. Milli ◽  
N. Bharmal ◽  
W. Brandner ◽  
...  

Context. The wind-driven halo is a feature that is observed in images that were delivered by the latest generation of ground-based instruments that are equipped with an extreme adaptive optics system and a coronagraphic device, such as SPHERE at the Very Large Telescope (VLT). This signature appears when the atmospheric turbulence conditions vary faster than the adaptive optics loop can correct for. The wind-driven halo is observed as a radial extension of the point spread function along a distinct direction (this is sometimes referred to as the butterfly pattern). When this is present, it significantly limits the contrast capabilities of the instrument and prevents the extraction of signals at close separation or extended signals such as circumstellar disks. This limitation is consequential because it contaminates the data for a substantial fraction of the time: about 30% of the data produced by the VLT/SPHERE instrument are affected by the wind-driven halo. Aims. This paper reviews the causes of the wind-driven halo and presents a method for analyzing its contribution directly from the scientific images. Its effect on the raw contrast and on the final contrast after post-processing is demonstrated. Methods. We used simulations and on-sky SPHERE data to verify that the parameters extracted with our method can describe the wind-driven halo in the images. We studied the temporal, spatial, and spectral variation of these parameters to point out its deleterious effect on the final contrast. Results. The data-driven analysis we propose provides information to accurately describe the wind-driven halo contribution in the images. This analysis confirms that this is a fundamental limitation of the finally reached contrast performance. Conclusions. With the established procedure, we will analyze a large sample of data delivered by SPHERE in order to propose post-processing techniques that are tailored to removing the wind-driven halo.


Sign in / Sign up

Export Citation Format

Share Document