scholarly journals Nitrogen abundance in the X-ray halos of clusters and groups of galaxies

2018 ◽  
Vol 621 ◽  
pp. A9 ◽  
Author(s):  
Junjie Mao ◽  
Jelle de Plaa ◽  
Jelle S. Kaastra ◽  
Ciro Pinto ◽  
Liyi Gu ◽  
...  

Context. Chemical abundances in the X-ray halos (also known as the intracluster medium, ICM) of clusters and groups of galaxies can be measured via prominent emission line features in their X-ray spectra. Elemental abundances are footprints of time-integrated yields of various stellar populations that have left their specific abundance patterns prior to and during the cluster and group evolution. Aim. We aim to constrain nitrogen abundances in the CHEmical Evolution RGS Sample (CHEERS), which contains 44 nearby groups and clusters of galaxies, to gain a better understanding of their chemical enrichment. Method. We examined the high-resolution spectra of the CHEERS sample and took various systematic effects in the spectral modelling into account. We compared the observed abundance ratios with those in the Galactic stellar populations and also with predictions from stellar yields (low- and intermediate-mass stars, massive stars, and degenerate stars). Results. The nitrogen abundance can only be well constrained (≳3σ) in one cluster of galaxies and seven groups of galaxies. The [O/Fe] – [Fe/H] relation of the ICM is comparable to that for the Galaxy, while the [N/Fe] and [N/O] ratios of the ICM are both higher than in the Galaxy. Future studies on nitrogen radial distributions are required to tell whether the obtained higher [N/Fe] and [N/O] ratios are biased as a result of the small extraction region (r/r500 ≲ 0.05) that we adopt here. Since abundances of odd-Z elements are more sensitive to the initial metallicity of stellar populations, accurate abundance measurements of N, Na, and Al are required to better constrain the chemical enrichment in the X-ray halos of clusters and groups of galaxies.

2019 ◽  
Vol 15 (S356) ◽  
pp. 280-284
Author(s):  
Angela Bongiorno ◽  
Andrea Travascio

AbstractXDCPJ0044.0-2033 is one of the most massive galaxy cluster at z ∼1.6, for which a wealth of multi-wavelength photometric and spectroscopic data have been collected during the last years. I have reported on the properties of the galaxy members in the very central region (∼ 70kpc × 70kpc) of the cluster, derived through deep HST photometry, SINFONI and KMOS IFU spectroscopy, together with Chandra X-ray, ALMA and JVLA radio data.In the core of the cluster, we have identified two groups of galaxies (Complex A and Complex B), seven of them confirmed to be cluster members, with signatures of ongoing merging. These galaxies show perturbed morphologies and, three of them show signs of AGN activity. In particular, two of them, located at the center of each complex, have been found to host luminous, obscured and highly accreting AGN (λ = 0.4−0.6) exhibiting broad Hα line. Moreover, a third optically obscured type-2 AGN, has been discovered through BPT diagram in Complex A. The AGN at the center of Complex B is detected in X-ray while the other two, and their companions, are spatially related to radio emission. The three AGN provide one of the closest AGN triple at z > 1 revealed so far with a minimum (maximum) projected distance of 10 kpc (40 kpc). The discovery of multiple AGN activity in a highly star-forming region associated to the crowded core of a galaxy cluster at z ∼ 1.6, suggests that these processes have a key role in shaping the nascent Brightest Cluster Galaxy, observed at the center of local clusters. According to our data, all galaxies in the core of XDCPJ0044.0-2033 could form a BCG of M* ∼ 1012Mȯ hosting a BH of 2 × 108−109Mȯ, in a time scale of the order of 2.5 Gyrs.


2020 ◽  
Vol 495 (4) ◽  
pp. 4707-4746
Author(s):  
M Silva ◽  
A Humphrey ◽  
P Lagos ◽  
S G Morais

ABSTRACT We study the ultraviolet (UV) emission-line ratios of a sample of 145 type II quasars (QSO2s) from Sloan Digital Sky Survey iii Baryon Oscillation Spectroscopic Survey, and compare against a grid of active galactic nucleus (AGN) photoionization models with a range in gas density, gas chemical abundances, and ionization parameter. Most of the quasars are ‘carbon-loud’, with C  iv/He ii ratios that are unusually high for the narrow-line region, implying higher than expected gas density (>106 cm−3) and/or significantly supersolar-relative carbon abundance. We also find that solar or supersolar nitrogen abundance and metallicity are required in the majority of our sample, with potentially significant variation between objects. Compared to radio galaxies at similar redshifts (HzRGs; z > 2), the QSO2s are offset to higher N  v/He ii, C  iv/He ii, and C iii]/He ii, suggesting systematically higher gas density and/or systematically higher C and N abundances. We find no evidence for a systematic difference in the N/C abundance ratio between the two types of objects. Scatter in the N  iv]/C  iv ratio implies a significant scatter in the N/C abundance ratio among the QSO2s and HzRGs, consistent with differences in the chemical enrichment histories between objects. Interestingly, we find that adopting secondary behaviour for both N and C alleviates the long-standing ‘N  iv] problem’. A subset of the QSO2s and HzRGs also appear to be ‘silicon-loud’, with Si iii] relative fluxes suggesting Si/C and Si/O are an order of magnitude above their solar values. Finally, we propose new UV-line criteria to select genuine QSO2s with low-density narrow-line regions.


2019 ◽  
Vol 485 (3) ◽  
pp. 4311-4329 ◽  
Author(s):  
Christian I Johnson ◽  
Nelson Caldwell ◽  
R Michael Rich ◽  
Mario Mateo ◽  
John I Bailey

ABSTRACT NGC 6402 is among the most massive globular clusters in the Galaxy, but little is known about its detailed chemical composition. Therefore, we obtained radial velocities and/or chemical abundances of 11 elements for 41 red giant branch stars using high resolution spectra obtained with the Magellan-M2FS instrument. We find NGC 6402 to be only moderately metal-poor with 〈[Fe/H]〉 = −1.13 dex (σ = 0.05 dex) and to have a mean heliocentric radial velocity of −61.1 km s−1 (σ = 8.5 km s−1). In general, NGC 6402 exhibits mean composition properties that are similar to other inner Galaxy clusters, such as [α/Fe] ∼+0.3 dex, [Cr,Ni/Fe] ∼ 0.0 dex, and 〈[La/Eu]〉 = −0.08 dex. Similarly, we find large star-to-star abundance variations for O, Na, Mg, Al, and Si that are indicative of gas that experienced high temperature proton-capture burning. Interestingly, we not only detect three distinct populations but also find large gaps in the [O/Fe], [Na/Fe], and [Al/Fe] distributions that may provide the first direct evidence of delayed formation for intermediate composition stars. A qualitative enrichment model is discussed where clusters form stars through an early ($\lesssim$5–10 Myr) phase, which results in first generation and ‘extreme’ composition stars, and a delayed phase ($\gtrsim$40 Myr), which results in the dilution of processed and pristine gas and the formation of intermediate composition stars. For NGC 6402, the missing intermediate composition stars suggest the delayed phase terminated prematurely, and as a result the cluster may uniquely preserve details of the chemical enrichment process.


1994 ◽  
Vol 161 ◽  
pp. 423-424
Author(s):  
I.N. Reid ◽  
S.R. Majewski

Starcounts remain one of the most effective methods of probing the structure of the Galactic stellar populations. However, studies of the distribution at large distances above the Plane demand accurate photometry extending to faint magnitudes (V > 20), and such datasets are still rare. We (Reid & Majewski 1993) have analyzed data from one field — Majewski's (1992) UJF observations of SA57, the North Galactic Pole field. Our results revealed significant discrepancies with the standard model of the Galaxy (see refs. in Reid & Majewski), notably a paucity in the number of halo stars by a factor of two and the presence of a factor of two more disk stars than predicted — sufficient stars that the disk is the majority stellar population, outnumbering halo stars 2:1 even at V = 21. Majewski et al. (1993) has obtained UJFN photographic data for several other fields, and Fig. 1 shows a preliminary comparison of these observations with the predictions of the best-fitting SA57 model. Given that none of the parameters have been modified, the agreement is surprisingly good.


2018 ◽  
Vol 619 ◽  
pp. A4 ◽  
Author(s):  
Javier Alonso-García ◽  
Roberto K. Saito ◽  
Maren Hempel ◽  
Dante Minniti ◽  
Joyce Pullen ◽  
...  

Context. The inner regions of the Galaxy are severely affected by extinction, which limits our capability to study the stellar populations present there. The Vista Variables in the Vía Láctea (VVV) ESO Public Survey has observed this zone at near-infrared wavelengths where reddening is highly diminished. Aims. By exploiting the high resolution and wide field-of-view of the VVV images we aim to produce a deep, homogeneous, and highly complete database of sources that cover the innermost regions of our Galaxy. Methods. To better deal with the high crowding in the surveyed areas, we have used point spread function (PSF)-fitting techniques to obtain a new photometry of the VVV images, in the ZY JHKs near-infrared filters available. Results. Our final catalogs contain close to one billion sources, with precise photometry in up to five near-infrared filters, and they are already being used to provide an unprecedented view of the inner Galactic stellar populations. We make these catalogs publicly available to the community. Our catalogs allow us to build the VVV giga-CMD, a series of color-magnitude diagrams of the inner regions of the Milky Way presented as supplementary videos. We provide a qualitative analysis of some representative CMDs of the inner regions of the Galaxy, and briefly mention some of the studies we have developed with this new dataset so far.


2019 ◽  
Vol 491 (4) ◽  
pp. 4894-4901
Author(s):  
Martín Solar ◽  
Patricia B Tissera ◽  
Jose A Hernandez-Jimenez

ABSTRACT The exploration of the spatial distribution of chemical abundances in star-forming regions of galactic discs can help us to understand the complex interplay of physical processes that regulate the star formation activity and the chemical enrichment across a galaxy. We study the azimuthal variations of the normalized oxygen abundance profiles in the highest numerical resolution run of the Evolution and Assembly of GaLaxies and their Environments (EAGLE) Project at $z$ = 0. We use young stellar populations to trace the abundances of star-forming regions. Oxygen profiles are estimated along different line of sights from a centrally located observer. The mean azimuthal variation in the EAGLE discs are ∼0.12 ± 0.03 dex $R_{\rm eff}^{-1}$ for slopes and ∼0.12 ± 0.03 dex for the zero-points, in agreement with previous works. Metallicity gradients measured along random directions correlate with those determined by averaging over the whole discs, although with a large dispersion. We find a slight trend for higher azimuthal variations in the disc components of low star-forming and bulge-dominated galaxies. We also investigate the metallicity profiles of stellar populations with higher and lower levels of enrichment than the average metallicity profiles, and we find that high star-forming regions with high metallicity tend to have slightly shallower metallicity slopes compared with the overall metallicity gradient. The simulated azimuthal variations in the EAGLE discs are in agreement with observations, although the large variety of metallicity gradients would encourage further exploration of the metal mixing in numerical simulations.


2019 ◽  
Vol 629 ◽  
pp. A34 ◽  
Author(s):  
Rafael Garcia-Dias ◽  
Carlos Allende Prieto ◽  
Jorge Sánchez Almeida ◽  
Pedro Alonso Palicio

Context. The vast volume of data generated by modern astronomical surveys offers test beds for the application of machine-learning. In these exploratory applications, it is important to evaluate potential existing tools and determine those that are optimal for extracting scientific knowledge from the available observations. Aims. We explore the possibility of using unsupervised clustering algorithms to separate stellar populations with distinct chemical patterns. Methods. Star clusters are likely the most chemically homogeneous populations in the Galaxy, and therefore any practical approach to identifying distinct stellar populations should at least be able to separate clusters from each other. We have applied eight clustering algorithms combined with four dimensionality reduction strategies to automatically distinguish stellar clusters using chemical abundances of 13 elements. Our test-bed sample includes 18 stellar clusters with a total of 453 stars. Results. We have applied statistical tests showing that some pairs of clusters (e.g., NGC 2458–NGC 2420) are indistinguishable from each other when chemical abundances from the Apache Point Galactic Evolution Experiment (APOGEE) are used. However, for most clusters we are able to automatically assign membership with metric scores similar to previous works. The confusion level of the automatically selected clusters is consistent with statistical tests that demonstrate the impossibility of perfectly distinguishing all the clusters from each other. These statistical tests and confusion levels establish a limit for the prospect of blindly identifying stars born in the same cluster based solely on chemical abundances. Conclusion. We find that some of the algorithms we explored are capable of blindly identify stellar populations with similar ages and chemical distributions in the APOGEE data. Even though we are not able to fully separate the clusters from each other, the main confusion arises from clusters with similar ages. Because some stellar clusters are chemically indistinguishable, our study supports the notion of extending weak chemical tagging that involves families of clusters instead of individual clusters.


2002 ◽  
Vol 187 ◽  
pp. 185-193
Author(s):  
Steven R. Majewski

I would like to focus on one aspect regarding the evolution of Galactic stellar populations that is particularly relevant to discussions at this symposium: Where were the sites of early star formation in the Galaxy? The large scatter in abundance ratios for metal poor stars suggests multiple early settings of star formation in the Milky Way. In this and other ways, interpretation of detailed stellar chemical abundance analyses are converging with those of spatial-kinematical analyses of field stars, star clusters and satellite galaxies.


2020 ◽  
Vol 639 ◽  
pp. A66 ◽  
Author(s):  
A. Michel ◽  
J. Haldemann ◽  
C. Mordasini ◽  
Y. Alibert

Context. Planet formation theory suggests that planet bulk compositions are likely to reflect the chemical abundance ratios of their host star’s photosphere. Variations in the abundance of particular chemical species in stellar photospheres between different galactic stellar populations demonstrate that there are differences among the expected solid planet bulk compositions. Aims. We aim to present planetary mass-radius relations of solid planets for kinematically differentiated stellar populations, namely, the thin disc, thick disc, and halo. Methods. Using two separate internal structure models, we generated synthetic planets using bulk composition inputs derived from stellar abundances. We explored two scenarios, specifically iron-silicate planets at 0.1 AU and silicate-iron-water planets at 4 AU. Results. We show that there is a persistent statistical difference in the expected mass-radius relations of solid planets among the different galactic stellar populations. At 0.1 AU for silicate-iron planets, there is a 1.51–2.04% mean planetary radius difference between the thick and thin disc stellar populations, whilst for silicate-iron-water planets past the ice line at 4 AU, we calculate a 2.93–3.26% difference depending on the models. Between the halo and thick disc, we retrieve at 0.1 AU a 0.53–0.69% mean planetary radius difference, and at 4 AU we find a 1.24–1.49% difference depending on the model. Conclusions. Future telescopes (such as PLATO) will be able to precisely characterize solid exoplanets and demonstrate the possible existence of planetary mass-radius relationship variability between galactic stellar populations.


Sign in / Sign up

Export Citation Format

Share Document