scholarly journals Lithium in the Hyades L5 brown dwarf 2MASS J04183483+2131275

2018 ◽  
Vol 615 ◽  
pp. L12 ◽  
Author(s):  
N. Lodieu ◽  
R. Rebolo ◽  
A. Pérez-Garrido

Aims. From the luminosity, effective temperature and age of the Hyades brown dwarf 2MASS J04183483+2131275 (2M0418), substellar evolutionary models predict a mass in the range 39−55 Jupiter masses (MJup) which is insufficient to produce any substantial lithium burning except for the very upper range >53 MJup. Our goal is to measure the abundance of lithium in this object, test the consistency between models and observations and refine constraints on the mass and age of the object. Methods. We used the 10.4-m Gran Telescopio Canarias (GTC) with its low-dispersion optical spectrograph to obtain ten spectra of 2277 s each covering the range 6300–10 300 Å with a resolving power of R ~ 500. Results. In the individual spectra, which span several months, we detect persistent unresolved Hα in emission with pseudo equivalent widths (pEW) in the range 45–150 Å and absorption lines of various alkalis with the typical strengths found in objects of L5 spectral type. The lithium resonance line at 6707.8 Å is detected with pEW of 18 ± 4 Å in 2M0418 (L5). Conclusions. We determine a lithium abundance of log N(Li) = 3.0 ± 0.4 dex consistent with a minimum preservation of 90% of this element which confirms 2M0418 as a brown dwarf with a maximum mass of 52 MJup. We infer a maximum age for the Hyades of 775 Myr from a comparison with the BHAC15 models. Combining recent results from the literature with our study, we constrain the mass of 2M0418 to 45–52 MJup and the age of the cluster to 580–775 Myr (1σ) based on the lithium depletion boundary method.

1998 ◽  
Vol 11 (1) ◽  
pp. 435-435
Author(s):  
Hugh R.A. Jones ◽  
Mike R.S. Hawkins

In a recent survey for faint red stars from a digital stack of Schmidt plates a number of candidate objects were identified. Parallax’s for three of these objects have been reported showing them to have luminosities which interpreted within the available evolutionary models indicate them to be good brown dwarf candidates. Here we examine spectra of these objects and others from the plate stack. Using standard spectral indices we find that for a given spectral type their spectra are more consistent with the Pleiades brown dwarfs (PPL 15, Teide 1 and Calar 3) than with standard late-type M dwarfs. Our interpretation is that this is due to their selection by RF IN colours which at values > 3 preferentially selects objects with relatively low gravities. For late-type M dwarfs and brown dwarfs low gravities are expected to be a reliable indication of youth. We also notice that the stack objects generally have strong FeH absorption for their spectral type. Current model atmospheres suggest that FeH strongly increases in strength toward lower metallicities and lower temperatures. We believe that this is not consistent with the available observational evidence from late-type M dwarfs. It is possible that solid Fe is forming inthe low temperature atmospheres relatively depleting FeH strengths toward lower temperatures. We find some evidence that for dwarfs at low temperatures dust formation is less prevalent in lower gravity objects suggesting that dwarfs at low temperatures stronger FeH may be an indication of youth. In addition to the spectral evidence the three stack objects whose parallax’s have been measured show small tangential velocities which is a further indication of youth.


2018 ◽  
Vol 618 ◽  
pp. A23 ◽  
Author(s):  
L. Rodet ◽  
M. Bonnefoy ◽  
S. Durkan ◽  
H. Beust ◽  
A.-M. Lagrange ◽  
...  

Context. Evolutionary models are widely used to infer the mass of stars, brown dwarfs, and giant planets. Their predictions are thought to be less reliable at young ages (< 200 Myr) and in the low-mass regime (< 1 M⊙). GJ 2060 AB and TWA 22 AB are two rare astrometric M-dwarf binaries, respectively members of the AB Doradus (AB Dor) and Beta Pictoris (β Pic) moving groups. As their dynamical mass can be measured to within a few years, they can be used to calibrate the evolutionary tracks and set new constraints on the age of young moving groups. Aims. We provide the first dynamical mass measurement of GJ 2060 and a refined measurement of the total mass of TWA 22. We also characterize the atmospheric properties of the individual components of GJ 2060 that can be used as inputs to the evolutionary models. Methods. We used NaCo and SPHERE observations at VLT and archival Keck/NIRC2 data to complement the astrometric monitoring of the binaries. We combined the astrometry with new HARPS radial velocities (RVs) and FEROS RVs of GJ 2060. We used a Markov chain Monte-Carlo (MCMC) module to estimate posteriors on the orbital parameters and dynamical masses of GJ 2060 AB and TWA 22 AB from the astrometry and RVs. Complementary data obtained with the integral field spectrograph VLT/SINFONI were gathered to extract the individual near-infrared (1.1–2.5 μm) medium-resolution (R ∼ 1500 − 2000) spectra of GJ 2060 A and B. We compared the spectra to those of known objects and to grids of BT-SETTL model spectra to infer the spectral type, bolometric luminosities, and temperatures of those objects. Results. We find a total mass of 0.18 ± 0.02 M⊙ for TWA 22, which is in good agreement with model predictions at the age of the β Pic moving group. We obtain a total mass of 1.09 ± 0.10 M⊙ for GJ 2060. We estimate a spectral type of M1 ± 0.5, L/L⊙ = −1.20 ± 0.05 dex, and Teff = 3700 ± 100 K for GJ 2060 A. The B component is a M3 ± 0.5 dwarf with L/L⊙ = −1.63 ± 0.05 dex and Teff = 3400 ± 100 K. The dynamical mass of GJ 2060 AB is inconsistent with the most recent models predictions (BCAH15, PARSEC) for an AB Dor age in the range 50–150 Myr. It is 10%–20% (1–2σ, depending on the assumed age) above the model’s predictions, corresponding to an underestimation of 0.10–0.20 M⊙. Coevality suggests a young age for the system (∼50 Myr) according to most evolutionary models. Conclusions. TWA 22 validates the predictions of recent evolutionary tracks at ∼20 Myr. On the other hand, we evidence a 1–2σ mismatch between the predicted and observed mass of GJ 2060 AB. This slight departure may indicate that one of the stars hosts a tight companion. Alternatively, this would confirm the model’s tendency to underestimate the mass of young low-mass stars.


A theoretical analysis is given of the application of an intensity interferometer to the measurement of the angular diameters of stars and the performance of such an instrument is calculated for representative parameters of the apparatus. It is shown that observations with an intensity interferometer are probably limited by the inherently low sensitivity of the technique to the stars visible to the naked eye, but that the resolving power, which is determined by the limitations of radio rather than of optical technique, should be great enough to measure any star, however hot, of sufficient apparent brightness; furthermore, the operation should be substantially unaffected by atmospheric scintillation. Very cool stars of adequate apparent brightness would be completely resolved by the individual mirrors of an intensity interferometer and this fact limits the technique to stars of spectral type earlier than about K 5. However, a modified form of interferometer using a single main mirror should enable this limit to be extended to bright stars of spectral type as late as M 5. Some applications of an intensity interferometer to measurements of both single and double stars are discussed briefly and it is concluded that such an instrument might be of value in astronomy.


1998 ◽  
Vol 11 (1) ◽  
pp. 363-363
Author(s):  
Johanna Jurcsik ◽  
Benjamin Montesinos

FG Sagittae is one of the most important key objects of post-AGB stellar evolutionary studies. As a consequence of a final helium shell flash, this unique variable has shown real evolutionary changes on human time scales during this century. The observational history was reviewed in comparison with predictions from evolutionary models. The central star of the old planetary nebula (Hel-5) evolved from left to right in the HR diagram, going in just hundred years from the hot region of exciting sources of planetary nebulae to the cool red supergiant domain just before our eyes becoming a newly-born post-AGB star. The effective temperature of the star was around 50,000 K at the beginning of this century, and the last estimates in the late 1980s give 5,000-6,500 K. Recent spectroscopic observations obtained by Ingemar Lundström show definite changes in the nebular line intensities. This fact undoubtedly rules out the possibility that, instead of FG Sge, a hidden hot object would be the true central star of the nebula. Consequently, the observed evolutionary changes are connected with the evolution of a single star.


2012 ◽  
Vol 753 (2) ◽  
pp. 156 ◽  
Author(s):  
J. Davy Kirkpatrick ◽  
Christopher R. Gelino ◽  
Michael C. Cushing ◽  
Gregory N. Mace ◽  
Roger L. Griffith ◽  
...  

2006 ◽  
Vol 2 (S240) ◽  
pp. 496-498
Author(s):  
K. Shabun ◽  
A. Richichi ◽  
U. Munari ◽  
A. Siviero ◽  
B. Pacsysnki

AbstractBinary and multiple systems constitute one of the main tools for obtaining fundamental stellar parameters, such as masses, radii, effective temperatures and distances. One especially fortunate, and at the same time rare, occurrence is that of double-lined eclipsing binaries with well-detached components. In this special case, it is possible to obtain a full solution of all orbital and stellar parameters, with the exception of the effective temperature of one star, which is normally estimated from spectral type or derived from atmospheric analysis of the spectrum. Long-baseline interferometry at facilities such as the ESO VLTI is beginning to have the capability to measure directly the angular separation and the angular diameter of some selected eclipsing binary systems, and we have proposed such observations with the AMBER instrument. In particular, we aim at deriving directly the effective temperature of at least one of the components in the proposed system, thereby avoiding any assumptions in the global solution through the Wilson–Devinney method. We will also obtain an independent check of the results of this latter method for the distance to the system. This represents the first step towards a global calibration of eclipsing binaries as distance indicators. Our results will also contribute to the effective temperature scale for hot stars. The extension of this approach to a wider sample of eclipsing binaries could provide an independent method to assess the distance to the LMC. The observations will extend accurate empirical calibration to spectral type O9 – B0.


2018 ◽  
Vol 620 ◽  
pp. A196 ◽  
Author(s):  
Leila M. Calcaferro ◽  
Alejandro H. Córsico ◽  
Leandro G. Althaus ◽  
Alejandra D. Romero ◽  
S. O. Kepler

Context. Some low-mass white-dwarf (WD) stars with H atmospheres currently being detected in our galaxy, show long-period g(gravity)-mode pulsations, and comprise the class of pulsating WDs called extremely low-mass variable (ELMV) stars. At present, it is generally believed that these stars have thick H envelopes. However, from stellar evolution considerations, the existence of low-mass WDs with thin H envelopes is also possible. Aims. We present a thorough asteroseismological analysis of ELMV stars on the basis of a complete set of fully evolutionary models that represents low-mass He-core WD stars harboring a range of H envelope thicknesses. Although there are currently nine ELMVs, here we only focus on those that exhibit more than three periods and whose periods do not show significant uncertainties. Methods. We considered g-mode adiabatic pulsation periods for low-mass He-core WD models with stellar masses in the range [0.1554–0.4352] M⊙, effective temperatures in the range [6000–10 000] K, and H envelope thicknesses in the interval −5.8 ≲ log(MH/M⋆)≲ −1.7. We explore the effects of employing different H-envelope thicknesses on the adiabatic pulsation properties of low-mass He-core WD models, and perform period-to-period fits to ELMV stars to search for a representative asteroseismological model. Results. We found that the mode-trapping effects of g modes depend sensitively on the value of MH, with the trapping cycle and trapping amplitude larger for thinner H envelopes. We also found that the asymptotic period spacing, ΔΠa, is longer for thinner H envelopes. Finally, we found asteroseismological models (when possible) for the stars under analysis, characterized by canonical (thick) and by thin H envelope. The effective temperature and stellar mass of these models are in agreement with the spectroscopic determinations. Conclusions. The fact that we have found asteroseismological solutions with H envelopes thinner than canonical gives a suggestion of the possible scenario of formation of these stars. Indeed, in the light of our results, some of these stars could have been formed by binary evolution through unstable mass loss.


2020 ◽  
Vol 641 ◽  
pp. A35
Author(s):  
R. Siebenmorgen ◽  
J. Krełowski ◽  
J. Smoker ◽  
G. Galazutdinov ◽  
S. Bagnulo

The precise characteristics of clouds and the nature of dust in the diffuse interstellar medium can only be extracted by inspecting the rare cases of single-cloud sightlines. In our nomenclature such objects are identified by interstellar lines, such as K I, that show at a resolving power of λ∕Δλ ~ 75 000 one dominating Doppler component that accounts for more than half of the observed column density. We searched for such sightlines using high-resolution spectroscopy towards reddened OB stars for which far-UV extinction curves are known. We compiled a sample of 186 spectra, 100 of which were obtained specifically for this project with UVES. In our sample we identified 65 single-cloud sightlines, about half of which were previously unknown. We used the CH/CH+ line ratio of our targets to establish whether the sightlines are dominated by warm or cold clouds. We found that CN is detected in all cold (CH/CH+ > 1) clouds, but is frequently absent in warm clouds. We inspected the WISE (3−22 μm) observed emission morphology around our sightlines and excluded a circumstellar nature for the observed dust extinction. We found that most sightlines are dominated by cold clouds that are located far away from the heating source. For 132 stars, we derived the spectral type and the associated spectral type-luminosity distance. We also applied the interstellar Ca II distance scale, and compared these two distance estimates with Gaia parallaxes. These distance estimates scatter by ~40%. By comparing spectral type-luminosity distances with those of Gaia, we detected a hidden dust component that amounts to a few mag of extinction for eight sightlines. This dark dust is populated by ≳ 1 μm large grains and predominately appears in the field of the cold interstellar medium.


2020 ◽  
Vol 639 ◽  
pp. A47
Author(s):  
A.-L. Maire ◽  
K. Molaverdikhani ◽  
S. Desidera ◽  
T. Trifonov ◽  
P. Mollière ◽  
...  

Context. Detecting and characterizing substellar companions for which the luminosity, mass, and age can be determined independently is of utter importance to test and calibrate the evolutionary models due to uncertainties in their formation mechanisms. HD 19467 is a bright and nearby star hosting a cool brown dwarf companion detected with radial velocities and imaging, making it a valuable object for such studies. Aims. We aim to further characterize the orbital, spectral, and physical properties of the HD 19467 system. Methods. We present new high-contrast imaging data with the SPHERE and NaCo instruments. We also analyze archival data from the instruments HARPS, NaCo, HIRES, UVES, and ASAS. Furthermore, we use proper motion data of the star from HIPPARCOS and Gaia. Results. We refined the properties of the host star and derived an age of 8.0+2.0−1.0 Gyr based on isochrones, gyrochronology, and chemical and kinematic arguments. This age estimate is slightly younger than previous age estimates of ~9–11 Gyr based on isochrones. No orbital curvature is seen in the current imaging, radial velocity, and astrometric data. From a joint fit of the data, we refined the orbital parameters for HD 19467B, including: a period of 398+95−93 yr, an inclination of 129.8+8.1−5.1 deg, an eccentricity of 0.56 ± 0.09, a longitude of the ascending node of 134.8 ± 4.5 deg, and an argument of the periastron of 64.2+5.5−6.3 deg. We assess a dynamical mass of 74+12−9 MJ. The fit with atmospheric models of the spectrophotometric data of the companion indicates an atmosphere without clouds or with very thin clouds, an effective temperature of 1042+77−71 K, and a high surface gravity of 5.34+0.8−0.9 dex. The comparison to model predictions of the bolometric luminosity and dynamical mass of HD 19467B, assuming our system age estimate, indicates a better agreement with the Burrows et al. (1997, ApJ, 491, 856) models; whereas, the other evolutionary models used tend to underestimate its cooling rate.


2020 ◽  
Vol 74 (10) ◽  
pp. 1287-1294 ◽  
Author(s):  
Thomas G. Mayerhöfer ◽  
Jürgen Popp

Based on Beer's law, it is assumed that the absorbance of a mixture is that of the neat materials weighted by their relative amounts (linear mixing rule). In this contribution, we show that this is an assumption that holds only under various approximations for which no change of the chemical interactions is just one among several. To understand these approximations, which lead incrementally to different well known mixing rules, we finally derive the linear mixing rule from the Lorentz–Lorenz relation, with the first approximation that the local electric field is correctly described in this relation. Further levels of approximation are that the local field equals the applied field (Newton–Laplace mixing rule) and that the change of the index of refraction and, equivalently, absorption is weak (Gladstone–Dale/Arago–Biot mixing rule). Even then the linear mixing rule is only strictly valid if the indices of refraction in the transparency region at higher frequency than the absorption have the same value and the mixing is homogeneous relative to the resolving power of the light (“micro-homogeneous”). Under these preconditions, linear mixing of the individual absorbances is established. We illustrate the spectral differences between the different mixing rules, all of which are based on volume and not on mass fractions, with examples. For micro-heterogeneous samples, a different linear mixing rule governs the optical properties, which refers to the experimental quantities, reflectance, and transmittance. As a result, for such samples, mixtures of already comparably high content give only weak signals due to band flattening, which are hard to distinguish from baseline effects.


Sign in / Sign up

Export Citation Format

Share Document