scholarly journals The difficulty of inferring progenitor masses from type-II-Plateau supernova light curves

2019 ◽  
Vol 625 ◽  
pp. A9 ◽  
Author(s):  
Luc Dessart ◽  
D. John Hillier

Much controversy surrounds the inferred progenitor masses of type-II-Plateau (II-P) supernovae (SNe). The debate is nourished by the discrepant results from radiation-hydrodynamics simulations, pre-explosion imaging, and studies of host stellar populations. Here, we present a controlled experiment using four solar-metallicity models with zero-age main sequence masses of 12, 15, 20, and 25 M⊙. Because of the effects of core burning and surface mass loss, these models reach core collapse as red-supergiant (RSG) stars with a similar H-rich envelope mass of 8 to 9 M⊙ but with final masses in the range 11 to 16 M⊙. We explode the progenitors using a thermal bomb, adjusting the energy deposition to yield an asymptotic ejecta kinetic energy of 1.25 × 1051 erg and an initial 56Ni mass of 0.04 M⊙. The resulting SNe produce similar photometric and spectroscopic properties from 10 to 200 d. The spectral characteristics are degenerate. The scatter in early-time color results from the range in progenitor radii, while the differences in late-time spectra reflect the larger oxygen yields in more massive progenitors. Because the progenitors have a comparable H-rich envelope mass, the photospheric phase duration is comparable for all models; the difference in He-core mass is invisible. As different main sequence masses can produce progenitors with a similar H-rich envelope mass, light-curve modeling cannot provide a robust and unique solution for the ejecta mass of type-II-P SNe. The numerous uncertainties in massive-star evolution and wind-mass loss also prevent a robust association with a main sequence star mass. Light-curve modeling can at best propose compatibility.

2022 ◽  
Vol 924 (1) ◽  
pp. 15
Author(s):  
W. V. Jacobson-Galán ◽  
L. Dessart ◽  
D. O. Jones ◽  
R. Margutti ◽  
D. L. Coppejans ◽  
...  

Abstract We present panchromatic observations and modeling of supernova (SN) 2020tlf, the first normal Type II-P/L SN with confirmed precursor emission, as detected by the Young Supernova Experiment transient survey. Pre-SN activity was detected in riz-bands at −130 days and persisted at relatively constant flux until first light. Soon after discovery, “flash” spectroscopy of SN 2020tlf revealed narrow, symmetric emission lines that resulted from the photoionization of circumstellar material (CSM) shed in progenitor mass-loss episodes before explosion. Surprisingly, this novel display of pre-SN emission and associated mass loss occurred in a red supergiant (RSG) progenitor with zero-age main-sequence mass of only 10–12 M ⊙, as inferred from nebular spectra. Modeling of the light curve and multi-epoch spectra with the non-LTE radiative-transfer code CMFGEN and radiation-hydrodynamical code HERACLES suggests a dense CSM limited to r ≈ 1015 cm, and mass-loss rate of 10−2 M ⊙ yr−1. The luminous light-curve plateau and persistent blue excess indicates an extended progenitor, compatible with an RSG model with R ⋆ = 1100 R ⊙. Limits on the shock-powered X-ray and radio luminosity are consistent with model conclusions and suggest a CSM density of ρ < 2 × 10−16 g cm−3 for distances from the progenitor star of r ≈ 5 × 1015 cm, as well as a mass-loss rate of M ̇ < 1.3 × 10 − 5 M ☉ yr − 1 at larger distances. A promising power source for the observed precursor emission is the ejection of stellar material following energy disposition into the stellar envelope as a result of gravity waves emitted during either neon/oxygen burning or a nuclear flash from silicon combustion.


1996 ◽  
Vol 145 ◽  
pp. 137-147
Author(s):  
S. E. Woosley ◽  
T. A. Weaver ◽  
R. G. Eastman

We review critical physics affecting the observational characteristics of those supernovae that occur in massive stars. Particular emphasis is given to 1) how mass loss, either to a binary companion or by a radiatively driven wind, affects the type and light curve of the supernova, and 2) the interaction of the outgoing supernova shock with regions of increasing pr3 in the stellar mantle. One conclusion is that Type II-L supernovae may occur in mass exchanging binaries very similar to the one that produced SN 1993J, but with slightly larger initial separations and residual hydrogen envelopes (∼1 Mʘ and radius ∼ several AU). The shock interaction, on the other hand, has important implications for the formation of black holes in explosions that are, near peak light, observationally indistinguishable from ordinary Type II-p and lb supernovae.


2020 ◽  
Vol 499 (1) ◽  
pp. 974-992
Author(s):  
C P Gutiérrez ◽  
A Pastorello ◽  
A Jerkstrand ◽  
L Galbany ◽  
M Sullivan ◽  
...  

ABSTRACT We present the photometric and spectroscopic evolution of the Type II supernova (SN II) SN 2017ivv (also known as ASASSN-17qp). Located in an extremely faint galaxy (Mr = −10.3 mag), SN 2017ivv shows an unprecedented evolution during the 2 yr of observations. At early times, the light curve shows a fast rise (∼6−8 d) to a peak of ${\it M}^{\rm max}_{g}= -17.84$ mag, followed by a very rapid decline of 7.94 ± 0.48 mag per 100 d in the V band. The extensive photometric coverage at late phases shows that the radioactive tail has two slopes, one steeper than that expected from the decay of 56Co (between 100 and 350 d), and another slower (after 450 d), probably produced by an additional energy source. From the bolometric light curve, we estimated that the amount of ejected 56Ni is ∼0.059 ± 0.003 M⊙. The nebular spectra of SN 2017ivv show a remarkable transformation that allows the evolution to be split into three phases: (1) Hα strong phase (&lt;200 d); (2) Hα weak phase (between 200 and 350 d); and (3) Hα broad phase (&gt;500 d). We find that the nebular analysis favours a binary progenitor and an asymmetric explosion. Finally, comparing the nebular spectra of SN 2017ivv to models suggests a progenitor with a zero-age main-sequence mass of 15–17 M⊙.


1987 ◽  
Vol 7 (2) ◽  
pp. 141-146 ◽  
Author(s):  
M. A. Dopita ◽  
N. Achilleos ◽  
J. A. Dawe ◽  
C. Flynn ◽  
S. J. Meatheringham ◽  
...  

AbstractIt now appears almost certain that the precursor of SN 1987a was the brighter of the components of Sk-69 202, a blue supergiant, with a precursor mass of perhaps 12-16 solar masses. Prior to the explosion the precursor had a core mass of order six solar masses, and 0.1 to 0.2 solar masses of residual hydrogen envelope. The compact nature of this star can account for many of the odd features of the subsequent light curve and spectral evolution.An analysis of the light curve and colour evolution shows four distinct epochs, which probably relate to the initial expansion of the fireball and the escape of shock-deposited thermal energy, the hydrogen-rich layers becoming optically thin, the exposure of the helium core, and the increasing transparency of the helium core.The supernova appeared to be at its maximum on May 10, but is dimmer than a normal Type II because its light is apparently derived from recombinations and the radioactive decay of 56Ni to 56Co to 56Fe rather than by the thermal energy deposited by the passage of the shock.


2020 ◽  
Vol 494 (4) ◽  
pp. 5230-5238
Author(s):  
Roni Anna Gofman ◽  
Naomi Gluck ◽  
Noam Soker

ABSTRACT We evolve stellar models with zero-age main-sequence (ZAMS) mass of MZAMS ≳ 18 M⊙ under the assumption that they experience an enhanced mass-loss rate when crossing the instability strip at high luminosities and conclude that most of them end as type Ibc supernovae (SNe Ibc) or dust-obscured SNe II. We explore what level of enhanced mass-loss rate during the instability strip would be necessary to explain the ‘red supergiant problem’. This problem refers to the dearth of observed core-collapse supernovae progenitors with MZAMS ≳ 18 M⊙. Namely, we examine what enhanced mass-loss rate could make it possible for all these stars actually to explode as core-collapse supernovae (CCSNe). We find that the mass-loss rate should increase by a factor of at least about 10. We reach this conclusion by analysing the hydrogen mass in the stellar envelope and the optical depth of the dusty wind at the explosion, and crudely estimate that under our assumptions only about a fifth of these stars explode as unobscured SNe II and SNe IIb. About 10–15 per cent end as obscured SNe II that are infrared-bright but visibly very faint, and the rest, about 65–70 per cent, end as SNe Ibc. However, the statistical uncertainties are still too significant to decide whether many stars with MZAMS ≳ 18 M⊙ do not explode as expected in the neutrino driven explosion mechanism, or whether all of them explode as CCSNe, as expected by the jittering jets explosion mechanism.


2005 ◽  
Vol 192 ◽  
pp. 567-572
Author(s):  
Inma Domínguez ◽  
Peter Höflich ◽  
Oscar Straniero ◽  
Marco Limongi ◽  
Alessandro Chieffi

SummaryWe have analyzed the influence of the stellar populations, from which SN progenitors come, on the observational outcome, including the metal free Pop. III. We use our models to study the evolution of the progenitor, the subsequent explosion and the light curves. For Type Ia, the variation of the main sequence mass of the progenitor of the exploding WD produces an offset in the maximum-decline relation of 0.2 mag. This effect is critical for the use of high redshift Type Ia SNe as cosmological standard candles. In contrast, the metallicity does not change the above relation (at maximum, ΔMV ≤0.06 mag). For Type II, we find a dependence of the light curve properties with both main sequence mass and metallicity of the progenitor, and we identify a rather homogeneous subclass, “Extreme II-P,” that may be used as a quasi-standard candle. Note that, although not as good as Type Ia for distance determinations, Type II are expected to have occurred since the first stars were formed.


2019 ◽  
Vol 629 ◽  
pp. A17
Author(s):  
Luc Dessart ◽  
Edouard Audit

Core-collapse supernova (SN) ejecta are probably structured on both small and large scales, with greater deviations from spherical symmetry nearer the explosion site. Here, we present 2D and 3D gray radiation hydrodynamics simulations of type II SN light curves from red and blue supergiant star explosions to investigate the impact of inhomogeneities in density or composition on SN observables, with a characteristic scale set to a few percent of the local radius. Clumping is found to hasten the release of stored radiation, boosting the early time luminosity and shortening the photospheric phase. Around the photosphere, radiation leaks between the clumps where the photon mean free path is greater. Since radiation is stored uniformly in volume, a greater clumping can increase this leakage by storing more and more mass into smaller and denser clumps containing less and less radiation energy. An inhomogeneous medium in which different regions recombine at different temperatures can also impact the light curve. Clumping can thus be a source of diversity in SN brightness. Clumping may lead to a systematic underestimate of ejecta masses from light curve modeling, although a significant offset seems to require a large density contrast of a few tens between clumps and interclump medium.


2013 ◽  
Vol 9 (S296) ◽  
pp. 86-89
Author(s):  
Takashi Moriya ◽  
Sergei I. Blinnikov ◽  
Nozomu Tominaga ◽  
Naoki Yoshida ◽  
Masaomi Tanaka ◽  
...  

AbstractOrigins of superluminous supernovae (SLSNe) discovered by recent SN surveys are still not known well. One idea to explain the huge luminosity is the collision of dense CSM and SN ejecta. If SN ejecta is surrounded by dense CSM, the kinetic energy of SN ejecta is efficiently converted to radiation energy, making them very bright. To see how well this idea works quantitatively, we performed numerical simulations of collisions of SN ejecta and dense CSM by using one-dimensional radiation hydrodynamics code STELLA and obtained light curves (LCs) resulting from the collision. First, we show the results of our LC modeling of SLSN 2006gy. We find that physical parameters of dense CSM estimated by using the idea of shock breakout in dense CSM (e.g., Chevalier & Irwin 2011, Moriya & Tominaga 2012) can explain the LC properties of SN 2006gy well. The dense CSM's radius is about 1016 cm and its mass about 15 M⊙. It should be ejected within a few decades before the explosion of the progenitor. We also discuss how LCs change with different CSM and SN ejecta properties and origins of the diversity of H-rich SLSNe. This can potentially be a probe to see diversities in mass-loss properties of the progenitors. Finally, we also discuss a possible signature of SN ejecta-CSM interaction which can be found in H-poor SLSN.


2011 ◽  
Vol 7 (S279) ◽  
pp. 427-428
Author(s):  
Takashi Yoshida ◽  
Hideyuki Umeda

AbstractWe investigate the evolution of very massive stars with Z = 0.2 Z⊙ to constrain the progenitor of the extremely luminous Type Ic SN 2007bi. In order to reproduce the 56Ni amount produced in SN 2007bi, the range of the stellar mass at the zero-age main-sequence is expected to be 515 - 575M⊙ for pair-instability supernova and 110 - 280M⊙ for core-collapse supernova. Uncertainty in the mass loss rate affects the mass range appropriate for the explosion of SN 2007bi. A core-collapse supernova of a WO star evolved from a 110 M⊙ star produces sufficient radioactive 56Ni to reproduce the light curve of SN 2007bi.


2019 ◽  
Vol 621 ◽  
pp. A30 ◽  
Author(s):  
J. Sollerman ◽  
F. Taddia ◽  
I. Arcavi ◽  
C. Fremling ◽  
C. Fransson ◽  
...  

Aims. We study iPTF14hls, a luminous and extraordinary long-lived Type II supernova, which lately has attracted much attention and disparate interpretation. Methods. We have presented new optical photometry that extends the light curves up to more than three years past discovery. We also obtained optical spectroscopy over this period, and furthermore present additional space-based observations using Swift and HST. Results. After an almost constant luminosity for hundreds of days, the later light curve of iPTF14hls finally fades and then displays a dramatic drop after about 1000 d, but the supernova is still visible at the latest epochs presented. The spectra have finally turned nebular, and our very last optical spectrum likely displays signatures from the deep and dense interior of the explosion. A high-resolution HST image highlights the complex environment of the explosion in this low-luminosity galaxy. Conclusions. We provide a large number of additional late-time observations of iPTF14hls, which are (and will continue to be) used to assess the many different interpretations for this intriguing object. In particular, the very late (+1000 d) steep decline of the optical light curve is difficult to reconcile with the proposed central engine models. The lack of very strong X-ray emission, and the emergence of intermediate-width emission lines including [S II] that we propose originate from dense, processed material in the core of the supernova ejecta, are also key observational tests for both existing and future models.


Sign in / Sign up

Export Citation Format

Share Document