scholarly journals The CARMENES search for exoplanets around M dwarfs

2019 ◽  
Vol 627 ◽  
pp. A49 ◽  
Author(s):  
M. Zechmeister ◽  
S. Dreizler ◽  
I. Ribas ◽  
A. Reiners ◽  
J. A. Caballero ◽  
...  

Context. Teegarden’s Star is the brightest and one of the nearest ultra-cool dwarfs in the solar neighbourhood. For its late spectral type (M7.0 V), the star shows relatively little activity and is a prime target for near-infrared radial velocity surveys such as CARMENES. Aims. As part of the CARMENES search for exoplanets around M dwarfs, we obtained more than 200 radial-velocity measurements of Teegarden’s Star and analysed them for planetary signals. Methods. We find periodic variability in the radial velocities of Teegarden’s Star. We also studied photometric measurements to rule out stellar brightness variations mimicking planetary signals. Results. We find evidence for two planet candidates, each with 1.1 M⊕ minimum mass, orbiting at periods of 4.91 and 11.4 d, respectively. No evidence for planetary transits could be found in archival and follow-up photometry. Small photometric variability is suggestive of slow rotation and old age. Conclusions. The two planets are among the lowest-mass planets discovered so far, and they are the first Earth-mass planets around an ultra-cool dwarf for which the masses have been determined using radial velocities.

2008 ◽  
Vol 4 (S253) ◽  
pp. 157-161 ◽  
Author(s):  
James P. Lloyd ◽  
Agnieszka Czeszumska ◽  
Jerry Edelstein ◽  
David Erskine ◽  
Michael Feuerstein ◽  
...  

AbstractThe TEDI (TripleSpec - Exoplanet Discovery Instrument) is a dedicated instrument for the near-infrared radial velocity search for planetary companions to low-mass stars with the goal of achieving meters-per-second radial velocity precision. Heretofore, such planet searches have been limited almost entirely to the optical band and to stars that are bright in this band. Consequently, knowledge about planetary companions to the populous but visibly faint low-mass stars is limited. In addition to the opportunity afforded by precision radial velocity searches directly for planets around low mass stars, transits around the smallest M dwarfs offer a chance to detect the smallest possible planets in the habitable zones of the parent stars. As has been the the case with followup of planet candidates detected by the transit method requiring radial velocity confirmation, the capability to undertake efficient precision radial velocity measurements of mid-late M dwarfs will be required. TEDI has been commissioned on the Palomar 200” telescope in December 2007, and is currently in a science verification phase.


2013 ◽  
Vol 147 (1) ◽  
pp. 20 ◽  
Author(s):  
Elisabeth R. Newton ◽  
David Charbonneau ◽  
Jonathan Irwin ◽  
Zachory K. Berta-Thompson ◽  
Barbara Rojas-Ayala ◽  
...  

2020 ◽  
Vol 640 ◽  
pp. A50 ◽  
Author(s):  
F. F. Bauer ◽  
M. Zechmeister ◽  
A. Kaminski ◽  
C. Rodríguez López ◽  
J. A. Caballero ◽  
...  

The high-resolution, dual channel, visible and near-infrared spectrograph CARMENES offers exciting opportunities for stellar and exoplanetary research on M dwarfs. In this work we address the challenge of reaching the highest radial velocity precision possible with a complex, actively cooled, cryogenic instrument, such as the near-infrared channel. We describe the performance of the instrument and the work flow used to derive precise Doppler measurements from the spectra. The capability of both CARMENES channels to detect small exoplanets is demonstrated with the example of the nearby M5.0 V star CD Cet (GJ 1057), around which we announce a super-Earth (4.0 ± 0.4 M⊕) companion on a 2.29 d orbit.


2020 ◽  
Vol 639 ◽  
pp. A35 ◽  
Author(s):  
S. Hojjatpanah ◽  
M. Oshagh ◽  
P. Figueira ◽  
N. C. Santos ◽  
E. M. Amazo-Gómez ◽  
...  

Context. Characterizing the relation between stellar photometric variability and radial velocity (RV) jitter can help us to better understand the physics behind these phenomena. The current and upcoming high precision photometric surveys such as TESS, CHEOPS, and PLATO will provide the community with thousands of new exoplanet candidates. As a consequence, the presence of such a correlation is crucial in selecting the targets with the lowest RV jitter for efficient RV follow-up of exoplanetary candidates. Studies of this type are also crucial to design optimized observational strategies to mitigate RV jitter when searching for Earth-mass exoplanets. Aims. Our goal is to assess the correlation between high-precision photometric variability measurements and high-precision RV jitter over different time scales. Methods. We analyze 171 G, K, and M stars with available TESS high precision photometric time-series and HARPS precise RVs. We derived the stellar parameters for the stars in our sample and measured the RV jitter and photometric variability. We also estimated chromospheric Ca II H & K activity indicator log(RHK′), v sin i, and the stellar rotational period. Finally, we evaluate how different stellar parameters and an RV sampling subset can have an impact on the potential correlations. Results. We find a varying correlation between the photometric variability and RV jitter as function of time intervals between the TESS photometric observation and HARPS RV. As the time intervals of the observations considered for the analysis increases, the correlation value and significance becomes smaller and weaker, to the point that it becomes negligible. We also find that for stars with a photometric variability above 6.5 ppt the correlation is significantly stronger. We show that such a result can be due to the transition between the spot-dominated and the faculae-dominated regime. We quantified the correlations and updated the relationship between chromospheric Ca II H & K activity indicator log(RHK′) and RV jitter.


2012 ◽  
Vol 8 (S293) ◽  
pp. 201-203
Author(s):  
Masashi Omiya ◽  
Bun'ei Sato ◽  
Hiroki Harakawa ◽  
Masayuki Kuzuhara ◽  
Teruyuki Hirano ◽  
...  

AbstractWe have a plan to conduct a Doppler planet search for low-mass planets around nearby middle-to-late M dwarfs using IRD. IRD is the near-infrared high-precision radial velocity instrument for the Subaru 8.2-m telescope. We expect to achieve the accuracy of the radial velocity measurements of 1 m/s using IRD with a frequency comb as a wavelengh calibrator. Thus, we would detect super-Earths in habitable zone and low-mass rocky planets in close-in orbits around late-M dwarfs. In this survey, we aim to understand and discuss statistical properties of low-mass planets around low-mass M dwarfs compared with those derived from theoretical simulations.


2017 ◽  
Vol 14 (S339) ◽  
pp. 22-22
Author(s):  
M. Burleigh

AbstractThis talk introduced and described the Next Generation Transit Survey (NGTS), which is a new ground-based transit survey operating at the ESO Paranal Observatory. NGTS has been designed to achieve better photometric precision than previous ground-based surveys; it aims to detect Neptune-sized planets around Sun-like stars, and sub-Neptunes around M dwarfs that are sufficiently bright for radial-velocity confirmation and mass determination. NGTS is also optimised for ground-based follow up of exoplanet candidates from TESS and PLATO. I presented early results from the survey, and described the status of our HARPS radial-velocity and SAAO photometric follow-ups of exoplanet candidates.


2003 ◽  
Vol 211 ◽  
pp. 457-458
Author(s):  
F. J. Clarke ◽  
C. G. Tinney ◽  
S. T. Hodgkin

We present results of two observing campaigns aimed at characterising variability of the L2 brown dwarf Kelu-1. The first campaign in March 2000 detected photometric variability at the 1.2% level, with a strong period of 1.8 hours. Followup spectroscopic observations with the VLT in February 2002 show no evidence of significant variability in the dust sensitive molecular lines, but do show evidence for variability in the EW(Hα) with a period of 1.8 hours. Radial velocity measurements rule out a close substellar companion. Kelu-1 appears to be a single brown dwarf with a rotation period of 1.8 hours.


2018 ◽  
Vol 618 ◽  
pp. A44 ◽  
Author(s):  
D. M. Bramich

Context. Astrometric microlensing can be used to make precise measurements of the masses of lens stars that are independent of their assumed internal physics. Such direct mass measurements, obtained purely by observing the gravitational effects of the stars on external objects, are crucial for validating theoretical stellar models. Specifically, astrometric microlensing provides a channel to direct mass measurements of single stars for which so few measurements exist. Microlensing events that also exhibit a detectable photometric signature provide even stronger lens mass constraints. Aims. I use the astrometric solutions and photometric measurements of ~1.7 billion stars provided by Gaia Data Release 2 (GDR2) to predict microlensing events during the nominal Gaia mission and beyond. This will enable astronomers to observe the entirety of each event, including the peak, with appropriate observing resources. The data collected will allow precise lens mass measurements for white dwarfs and low-mass main sequence stars (K and M dwarfs) helping to constrain stellar evolutionary models. Methods. I search for source-lens pairs in GDR2 that could potentially lead to microlensing events between 25th July 2014 and 25th July 2026. I estimate the lens masses using GDR2 photometry and parallaxes, and appropriate model stellar isochrones. Combined with the source and lens parallax measurements from GDR2, this allows the Einstein ring radius to be computed for each source-lens pair. By considering the source and lens paths on the sky, I calculate the microlensing signals that are to be expected. Results. I present a list of 76 predicted microlensing events. Nine and five astrometric events will be caused by the white dwarf stars LAWD 37 and Stein 2051 B, respectively. A further nine events will exhibit detectable photometric and astrometric signatures. Of the remaining events, ten will exhibit astrometric signals with peak amplitudes above 0.5 mas, while the rest are low-amplitude astrometric events with peak amplitudes between 0.131 and 0.5 mas. Five and two events will reach their peaks during 2018 and 2019, respectively. Five of the photometric events have the potential to evolve into high-magnification events, which may also probe for planetary companions to the lenses.


2018 ◽  
Vol 155 (5) ◽  
pp. 198 ◽  
Author(s):  
Étienne Artigau ◽  
Lison Malo ◽  
René Doyon ◽  
Pedro Figueira ◽  
Xavier Delfosse ◽  
...  

2020 ◽  
Vol 641 ◽  
pp. L1 ◽  
Author(s):  
E. Martioli ◽  
G. Hébrard ◽  
C. Moutou ◽  
J.-F. Donati ◽  
É. Artigau ◽  
...  

We present high-resolution near-infrared spectropolarimetric observations using the SPIRou instrument at Canada-France-Hawaii Telescope (CFHT) during a transit of the recently detected young planet AU Mic b, with supporting spectroscopic data from iSHELL at NASA InfraRed Telescope Facility. We detect Zeeman signatures in the Stokes V profiles and measure a mean longitudinal magnetic field of ¯Bℓ = 46.3 ± 0.7 G. Rotationally modulated magnetic spots likely cause long-term variations of the field with a slope of dBℓ/dt = −108.7 ± 7.7 G d−1. We apply the cross-correlation technique to measure line profiles and obtain radial velocities through CCF template matching. We find an empirical linear relationship between radial velocity and Bℓ, which allows us to estimate the radial-velocity induced by stellar activity through rotational modulation of spots for the five hours of continuous monitoring of AU Mic with SPIRou. We model the corrected radial velocities for the classical Rossiter-McLaughlin effect, using MCMC to sample the posterior distribution of the model parameters. This analysis shows that the orbit of AU Mic b is prograde and aligned with the stellar rotation axis with a sky-projected spin-orbit obliquity of λ = 0°−15°+18°. The aligned orbit of AU Mic b indicates that it formed in the protoplanetary disk that evolved into the current debris disk around AU Mic.


Sign in / Sign up

Export Citation Format

Share Document