scholarly journals Physical properties of the diffuse medium and of dense cores in the Perseus star-forming region derived from the Herschel Gould Belt Survey observations

Author(s):  
S. Pezzuto ◽  
M. Benedettini ◽  
J. Di Francesco ◽  
P. Palmeirim ◽  
S. Sadavoy ◽  
...  
2018 ◽  
Vol 615 ◽  
pp. A125 ◽  
Author(s):  
D. Bresnahan ◽  
D. Ward-Thompson ◽  
J. M. Kirk ◽  
K. Pattle ◽  
S. Eyres ◽  
...  

We present a catalogue of prestellar and starless cores within the Corona Australis molecular cloud using photometric data from the Herschel Space Observatory. At a distance of d ~ 130 pc, Corona Australis is one of the closest star-forming regions. Herschel has taken multi-wavelength data of Corona Australis with both the Spectral and Photometric Imaging Receiver (SPIRE) and the Photodetector Array Camera and Spectrometer (PACS) photometric cameras in a parallel mode with wavelengths in the range 70–500 μm. A complete sample of starless and prestellar cores and embedded protostars is identified. Other results from the Herschel Gould Belt Survey have shown spatial correlation between the distribution of dense cores and the filamentary structure within the molecular clouds. We go further and show correlations between the properties of these cores and their spatial distribution within the clouds, with a particular focus on the mass distribution of the dense cores with respect to their filamentary proximity. We find that only lower-mass starless cores form away from filaments, while all of the higher-mass prestellar cores form in close proximity to or directly on the filamentary structure. This result supports the paradigm that prestellar cores mostly form on filaments. We analyse the mass distribution across the molecular cloud, finding evidence that the region around the Coronet appears to be at a more dynamically advanced evolutionary stage in comparison to the rest of the clumps within the cloud.


2020 ◽  
Vol 500 (4) ◽  
pp. 4257-4276
Author(s):  
E Fiorellino ◽  
D Elia ◽  
Ph André ◽  
A Men’shchikov ◽  
S Pezzuto ◽  
...  

ABSTRACT The Herschel Gould Belt survey mapped the nearby (d < 500 pc) star-forming regions to understand better how the prestellar phase influences the star formation process. Here, we report a complete census of dense cores in a ∼15 deg2 area of the Serpens star-forming region located between d ∼ 420 and 484 pc. The PACS and SPIRE cameras imaged this cloud from 70 to 500 μm. With the multiwavelength source extraction algorithm getsources, we extract 833 sources, of which 709 are starless cores and 124 are candidate protostellar cores. We obtain temperatures and masses for all the sample, classifying the starless cores in 604 prestellar cores and 105 unbound cores. Our census of sources is $80{{\ \rm per\ cent}}$ complete for M > 0.8 M⊙ overall. We produce the core mass function (CMF) and compare it with the initial mass function (IMF). The prestellar CMF is consistent with lognormal trend up to ∼2 M⊙, after which it follows a power law with slope of −2.05 ± 0.34. The tail of its CMF is steeper but still compatible with the IMF for the region we studied in this work. We also extract the filaments network of the Serpens region, finding that $81{{\ \rm per\ cent}}$ of prestellar cores lie on filamentary structures. The spatial association between cores and filamentary structure supports the paradigm, suggested by other Herschel observations, that prestellar cores mostly form on filaments. Serpens is confirmed to be a young, low-mass and active star-forming region.


2020 ◽  
Vol 494 (2) ◽  
pp. 2823-2838 ◽  
Author(s):  
Ana Trčka ◽  
Maarten Baes ◽  
Peter Camps ◽  
Sharon E Meidt ◽  
James Trayford ◽  
...  

ABSTRACT We compare the spectral energy distributions (SEDs) and inferred physical properties for simulated and observed galaxies at low redshift. We exploit UV-submillimetre mock fluxes of ∼7000 z = 0 galaxies from the EAGLE suite of cosmological simulations, derived using the radiative transfer code skirt. We compare these to ∼800 observed galaxies in the UV-submillimetre range, from the DustPedia sample of nearby galaxies. To derive global properties, we apply the SED fitting code cigale consistently to both data sets, using the same set of ∼80 million models. The results of this comparison reveal overall agreement between the simulations and observations, both in the SEDs and in the derived physical properties, with a number of discrepancies. The optical and far-infrared regimes, and the scaling relations based upon the global emission, diffuse dust, and stellar mass, show high levels of agreement. However, the mid-infrared fluxes of the EAGLE galaxies are overestimated while the far-UV domain is not attenuated enough, compared to the observations. We attribute these discrepancies to a combination of galaxy population differences between the samples and limitations in the subgrid treatment of star-forming regions in the EAGLE-skirt post-processing recipe. Our findings show the importance of detailed radiative transfer calculations and consistent comparison, and provide suggestions for improved numerical models.


2018 ◽  
Vol 609 ◽  
pp. A129 ◽  
Author(s):  
L. Colzi ◽  
F. Fontani ◽  
P. Caselli ◽  
C. Ceccarelli ◽  
P. Hily-Blant ◽  
...  

The ratio between the two stable isotopes of nitrogen, 14N and 15N, is well measured in the terrestrial atmosphere (~272), and for the pre-solar nebula (~441, deduced from the solar wind). Interestingly, some pristine solar system materials show enrichments in 15N with respect to the pre-solar nebula value. However, it is not yet clear if and how these enrichments are linked to the past chemical history because we have only a limited number of measurements in dense star-forming regions. In this respect, dense cores, which are believed to be the precursors of clusters and also contain intermediate- and high-mass stars, are important targets because the solar system was probably born within a rich stellar cluster, and such clusters are formed in high-mass star-forming regions. The number of observations in such high-mass dense cores has remained limited so far. In this work, we show the results of IRAM-30 m observations of the J = 1−0 rotational transition of the molecules HCN and HNC and their 15N-bearing counterparts towards 27 intermediate- and high-mass dense cores that are divided almost equally into three evolutionary categories: high-mass starless cores, high-mass protostellar objects, and ultra-compact Hii regions. We have also observed the DNC(2–1) rotational transition in order to search for a relation between the isotopic ratios D/H and 14N/15N. We derive average 14N/15N ratios of 359 ± 16 in HCN and of 438 ± 21 in HNC, with a dispersion of about 150–200. We find no trend of the 14N/15N ratio with evolutionary stage. This result agrees with what has been found for N2H+ and its isotopologues in the same sources, although the 14N/15N ratios from N2H+ show a higher dispersion than in HCN/HNC, and on average, their uncertainties are larger as well. Moreover, we have found no correlation between D/H and 14N/15N in HNC. These findings indicate that (1) the chemical evolution does not seem to play a role in the fractionation of nitrogen, and that (2) the fractionation of hydrogen and nitrogen in these objects is not related.


2020 ◽  
Vol 644 ◽  
pp. A82
Author(s):  
O. Miettinen

Context. Infrared dark clouds (IRDCs) can be the birth sites of high-mass stars, and hence determining the physical properties of dense cores in IRDCs is useful to constrain the initial conditions and theoretical models of high-mass star formation. Aims. We aim to determine the physical properties of dense cores in the filamentary Seahorse IRDC G304.74+01.32. Methods. We used data from the Wide-field Infrared Survey Explorer (WISE), Infrared Astronomical Satellite (IRAS), and Herschel in conjuction with our previous 350 and 870 μm observations with the Submillimetre APEX Bolometer Camera (SABOCA) and Large APEX BOlometer CAmera, and constructed the far-IR to submillimetre spectral energy distributions (SEDs) of the cores. The SEDs were fitted using single or two-temperature modified blackbody emission curves to derive the dust temperatures, masses, and luminosities of the cores. Results. For the 12 analysed cores, which include two IR dark cores (no WISE counterpart), nine IR bright cores, and one H II region, the mean dust temperature of the cold (warm) component, the mass, luminosity, H2 number density, and surface density were derived to be 13.3 ± 1.4 K (47.0 ± 5.0 K), 113 ± 29 M⊙, 192 ± 94 L⊙, (4.3 ± 1.2) × 105 cm−3, and 0.77 ± 0.19 g cm−3, respectively. The H II region IRAS 13039-6108a was found to be the most luminous source in our sample ((1.1 ± 0.4) × 103 L⊙). All the cores were found to be gravitationally bound (i.e. the virial parameter αvir < 2). Two out of the nine analysed IR bright cores (22%) were found to follow an accretion luminosity track under the assumptions that the mass accretion rate is 10−5 M⊙ yr−1, the stellar mass is 10% of the parent core mass, and the radius of the central star is 5 R⊙. Most of the remaing ten cores were found to lie within 1 dex below this accretion luminosity track. Seven out of 12 of the analysed cores (58%) were found to lie above the mass-radius thresholds of high-mass star formation proposed in the literature. The surface densities of Σ > 0.4 g cm−3 derived for these seven cores also exceed the corresponding threshold for high-mass star formation. Five of the analysed cores (42%) show evidence of fragmentation into two components in the SABOCA 350 μm image. Conclusions. In addition to the H II region source IRAS 13039-6108a, some of the other cores in Seahorse also appear to be capable of giving birth to high-mass stars. The 22 μm dark core SMM 9 is likely to be the youngest source in our sample that has the potential to form a high-mass star (96 ± 23 M⊙ within a radius of ~0.1 pc). The dense core population in the Seahorse IRDC has comparable average properties to the cores in the well-studied Snake IRDC G11.11-0.12 (e.g. Tdust and L agree within a factor of ~1.8); furthermore, the Seahorse, which lies ~60 pc above the Galactic plane, appears to be a smaller (e.g. three times shorter in projection, ~100 times less massive) version of the Snake. The Seahorse core fragmentation mechanisms appear to be heterogenous, including cases of both thermal and non-thermal Jeans instability. High-resolution follow-up studies are required to address the fragmented cores’ genuine potential of forming high-mass stars.


2010 ◽  
Vol 524 ◽  
pp. A91 ◽  
Author(s):  
O. Miettinen ◽  
J. Harju ◽  
L. K. Haikala ◽  
M. Juvela

2020 ◽  
Vol 58 (1) ◽  
pp. 661-725 ◽  
Author(s):  
Natascha M. Förster Schreiber ◽  
Stijn Wuyts

Ever deeper and wider look-back surveys have led to a fairly robust outline of the cosmic star-formation history, which culminated around [Formula: see text]; this period is often nicknamed “cosmic noon.” Our knowledge about star-forming galaxies at these epochs has dramatically advanced from increasingly complete population censuses and detailed views of individual galaxies. We highlight some of the key observational insights that influenced our current understanding of galaxy evolution in the equilibrium growth picture: ▪  Scaling relations between galaxy properties are fairly well established among massive galaxies at least out to [Formula: see text], pointing to regulating mechanisms already acting on galaxy growth. ▪  Resolved views reveal that gravitational instabilities and efficient secular processes within the gas- and baryon-rich galaxies at [Formula: see text] play an important role in the early buildup of galactic structure. ▪  Ever more sensitive observations of kinematics at [Formula: see text] are probing the baryon and dark matter budget on galactic scales and the links between star-forming galaxies and their likely descendants. ▪  Toward higher masses, massive bulges, dense cores, and powerful AGNs and AGN-driven outflows are more prevalent and likely play a role in quenching star formation. We outline emerging questions and exciting prospects for the next decade with upcoming instrumentation, including the James Webb Space Telescope and the next generation of extremely large telescopes.


2020 ◽  
Vol 635 ◽  
pp. A34 ◽  
Author(s):  
V. Könyves ◽  
Ph. André ◽  
D. Arzoumanian ◽  
N. Schneider ◽  
A. Men’shchikov ◽  
...  

We present a detailed study of the Orion B molecular cloud complex (d ~ 400 pc), which was imaged with the PACS and SPIRE photometric cameras at wavelengths from 70 to 500 μm as part of the Herschel Gould Belt survey (HGBS). We release new high-resolution maps of column density and dust temperature for the whole complex, derived in the same consistent manner as for other HGBS regions. In the filamentary subregions NGC 2023 and 2024, NGC 2068 and 2071, and L1622, a total of 1768 starless dense cores were identified based on Herschel data, 490–804 (~28−45%) of which are self-gravitating prestellar cores that will likely form stars in the future. A total of 76 protostellar dense cores were also found. The typical lifetime of the prestellar cores was estimated to be tpreOrionB = 1.7−0.6+0.8Myr. The prestellar core mass function (CMF) derived for the whole sample of prestellar cores peaks at ~0.5 M⊙ (in dN/dlogM format) and is consistent with a power-law with logarithmic slope −1.27 ± 0.24 at the high-mass end, compared to the Salpeter slope of − 1.35. In the Orion B region, we confirm the existence of a transition in prestellar core formation efficiency (CFE) around a fiducial value AVbg ~ 7 mag in background visual extinction, which is similar to the trend observed with Herschel in other regions, such as the Aquila cloud. This is not a sharp threshold, however, but a smooth transition between a regime with very low prestellar CFE at AVbg < 5 and a regime with higher, roughly constant CFE at AVbg ≳ 10. The total mass in the form of prestellar cores represents only a modest fraction (~20%) of the dense molecular cloud gas above AVbg ≳ 7 mag. About 60–80% of the prestellar cores are closely associated with filaments, and this fraction increases up to >90% when a more complete sample of filamentary structures is considered. Interestingly, the median separation observed between nearest core neighbors corresponds to the typical inner filament width of ~0.1 pc, which is commonly observed in nearby molecular clouds, including Orion B. Analysis of the CMF observed as a function of background cloud column density shows that the most massive prestellar cores are spatially segregated in the highest column density areas, and suggests that both higher- and lower-mass prestellar cores may form in denser filaments.


2000 ◽  
Vol 197 ◽  
pp. 61-70
Author(s):  
Nagayoshi Ohashi

We have carried out interferometric observations of pre-protostellar and protostellar envelopes in Taurus. Protostellar envelopes are dense gaseous condensations with young stellar objects or protostars, while pre-protostellar envelopes are those without any known young stellar objects. Five pre-protostellar envelopes have been observed in CCS JN=32–21, showing flattened and clumpy structures of the envelopes. The observed CCS spectra show moderately narrow line widths, ~0.1 to ~0.35 km s–1. One pre-protostellar envelope, L1544, shows a remarkable velocity pattern, which can be explained in terms of infall and rotation. Our C18O J=1–0 observations of 8 protostellar envelopes show that they have also flattened structures like pre-protostellar envelopes but no clumpy structures. Four out the eight envelopes show velocity patterns that can be explained by motions of infall (and rotation). Physical properties of pre-protostellar and protostellar envelopes are discussed in detail.


2020 ◽  
Vol 495 (1) ◽  
pp. 1172-1187
Author(s):  
Ross Dempsey ◽  
Nadia L Zakamska ◽  
James E Owen

ABSTRACT ‘Orion fingers’ are a system of dozens of bow shocks, with the wings of shocks pointing to a common system of origin, which is centred on a dynamically disintegrating system of several massive stars. The shock heads propagate with velocities of up to 300–400 km s−1, but the formation and physical properties of the ‘bullets’ leading the shocks are not known. Here, we summarize two possible scenarios for the formation of the ‘bullets’ and the resulting bow shocks (‘fingers’). In the first scenario, bullets are self-gravitating, Jupiter-mass objects that were formed rapidly and then ejected during the strong dynamical interactions of massive stars and their discs. This scenario naturally explains the similar time-scales for the outflow of bullets and for the dynamical interaction of the massive stars, but has some difficulty explaining the observed high velocities of the bullets. In the second scenario, bullets are formed via hydrodynamic instabilities in a massive, infrared-driven wind, naturally explaining the high velocities and the morphology of outflow, but the bullets are not required to be self-gravitating. The processes that created the Orion fingers are likely not unique to this particular star-forming region and may result in free-floating, high-velocity, core-less planets.


Sign in / Sign up

Export Citation Format

Share Document