scholarly journals Proton–synchrotron as the radiation mechanism of the prompt emission of gamma-ray bursts?

2020 ◽  
Vol 636 ◽  
pp. A82 ◽  
Author(s):  
G. Ghisellini ◽  
G. Ghirlanda ◽  
G. Oganesyan ◽  
S. Ascenzi ◽  
L. Nava ◽  
...  

We discuss the new surprising observational results that indicate quite convincingly that the prompt emission of gamma-ray bursts (GRBs) is due to synchrotron radiation produced by a particle distribution that has a low-energy cut-off. The evidence of this is provided by the low-energy part of the spectrum of the prompt emission, which shows the characteristic Fν ∝ ν1/3 shape followed by Fν ∝ ν−1/2 up to the peak frequency. This implies that although the emitting particles are in fast cooling, they do not cool completely. This poses a severe challenge to the basic ideas about how and where the emission is produced, because the incomplete cooling requires a small value of the magnetic field to limit synchrotron cooling, and a large emitting region to limit the self-Compton cooling, even considering Klein–Nishina scattering effects. Some new and fundamental ingredient is required for understanding the GRBs prompt emission. We propose proton–synchrotron as a promising mechanism to solve the incomplete cooling puzzle.

2019 ◽  
Vol 625 ◽  
pp. A60 ◽  
Author(s):  
M. E. Ravasio ◽  
G. Ghirlanda ◽  
L. Nava ◽  
G. Ghisellini

The long-lasting tension between the observed spectra of gamma-ray bursts (GRBs) and the predicted synchrotron emission spectrum might be solved if electrons do not completely cool. Evidence of incomplete cooling was recently found in Swift GRBs with prompt observations down to 0.1 keV, and in one bright Fermi burst, GRB 160625B. Here we systematically search for evidence of incomplete cooling in the spectra of the ten brightest short and long GRBs observed by Fermi. We find that in eight out of ten long GRBs there is compelling evidence of a low-energy break (below the peak energy) and good agreement with the photon indices of the synchrotron spectrum (respectively −2/3 and −3/2 below the break and between the break and the peak energy). Interestingly, none of the ten short GRBs analysed shows a break, but the low-energy spectral slope is consistent with −2/3. In a standard scenario, these results imply a very low magnetic field in the emission region (B′∼10 G in the comoving frame), at odd with expectations.


2012 ◽  
Vol 12 ◽  
pp. 385-389
Author(s):  
B. PATRICELLI ◽  
M.G. BERNARDINI ◽  
C.L. BIANCO ◽  
L. CAITO ◽  
G. DE BARROS ◽  
...  

The analysis of various Gamma Ray Bursts (GRBs) characterized by an isotropic energy Eiso ≲ 1053 ergs within the fireshell model has shown how that the observed N(E) spectrum of their prompt emission can be reproduced in a satisfactory way by assuming a thermal spectrum in the comoving frame of the fireshell. Nevertheless, from the study of higher energetic bursts (Eiso ≳ 1054 ergs ) such as, for example, GRB 080319B, some discrepancies between the numerical simulations and the observational data have been observed. We investigate a different spectrum of photons in the comoving frame of the fireshell in order to better reproduce the spectral properties of GRB prompt emission within the fireshell model. We introduce a phenomenologically modified comoving thermal spectrum: a spectrum characterized by a different asymptotic low energy slope with respect to the thermal one. We test this spectrum by comparing the numerical simulations with the observed prompt emission spectra of various GRBs; we present, as an exaple, the case of GRB 080319B.


2007 ◽  
Vol 21 (03n04) ◽  
pp. 627-632
Author(s):  
G. BARBIELLINI ◽  
F. LONGO ◽  
N. OMODEI ◽  
D. GIULIETTI ◽  
A. CELOTTI ◽  
...  

Gamma-Ray Burst (GRB) prompt emission can, for specific conditions, be so powerful and short-pulsed to strongly influence any surrounding plasma. In this paper, we briefly discuss the possibility that a very intense initial burst of radiation produced by GRBs satisfy the intensity and temporal conditions to cause stochastic wake-field particle acceleration in a surrounding plasma of moderate density. We consider a simple but realistic GRB model for which particle wake-field acceleration can first be excited by a very strong low-energy precursor, and then be effective in producing the observed prompt X-ray and gamma-ray GRB emission.


2019 ◽  
Vol 628 ◽  
pp. A59 ◽  
Author(s):  
G. Oganesyan ◽  
L. Nava ◽  
G. Ghirlanda ◽  
A. Melandri ◽  
A. Celotti

Information on the spectral shape of prompt emission in gamma-ray bursts (GRB) is mostly available only at energies ≳10 keV, where the main instruments for GRB detection are sensitive. The origin of this emission is still very uncertain because of the apparent inconsistency with synchrotron radiation, which is the most obvious candidate, and the resulting need for considering less straightforward scenarios. The inclusion of data down to soft X-rays (∼0.5 keV), which are available only in a small fraction of GRBs, has firmly established the common presence of a spectral break in the low-energy part of prompt spectra, and even more importantly, the consistency of the overall spectral shape with synchrotron radiation in the moderately fast-cooling regime, the low-energy break being identified with the cooling frequency. In this work we further extend the range of investigation down to the optical band. In particular, we test the synchrotron interpretation by directly fitting a theoretically derived synchrotron spectrum and making use of optical to gamma-ray data. Secondly, we test an alternative model that considers the presence of a black-body component at ∼keV energies, in addition to a non-thermal component that is responsible for the emission at the spectral peak (100 keV–1 MeV). We find that synchrotron radiation provides a good description of the broadband data, while models composed of a thermal and a non-thermal component require the introduction of a low-energy break in the non-thermal component in order to be consistent with optical observations. Motivated by the good quality of the synchrotron fits, we explore the physical parameter space of the emitting region. In a basic prompt emission scenario we find quite contrived solutions for the magnetic field strength (5 G < B′< 40 G) and for the location of the region where the radiation is produced (Rγ >  1016 cm). We discuss which assumptions of the basic model would need to be relaxed in order to achieve a more natural parameter space.


2010 ◽  
Vol 6 (S275) ◽  
pp. 335-343
Author(s):  
Gabriele Ghisellini

AbstractThe recent years witnessed a dramatic improvement in our knowledge of the phenomenology and physics of Gamma Ray Bursts (GRBs). However, our “pillars of knowledge” remain a few, while many aspects remain obscure and not understood. There is no general agreement on the radiation mechanism of the prompt emission, nor on the process able to convert the bulk motion of the fireball into random energy of the emitting leptons. The afterglow phase can now be studied at very early phases, showing an unforeseen phenomenology, still to be understood. In this context, the detection of ~GeV emission from ~10% of GRBs, made possible by the Fermi satellite, can hopefully shed light on some controversial issues.


2020 ◽  
Vol 499 (4) ◽  
pp. 5986-5992
Author(s):  
Nikhil Sarin ◽  
Paul D Lasky ◽  
Gregory Ashton

ABSTRACT The spin-down energy of millisecond magnetars has been invoked to explain X-ray afterglow observations of a significant fraction of short and long gamma-ray bursts. Here, we extend models previously introduced in the literature, incorporating radiative losses with the spin-down of a magnetar central engine through an arbitrary braking index. Combining this with a model for the tail of the prompt emission, we show that our model can better explain the data than millisecond-magnetar models without radiative losses or those that invoke spin-down solely through vacuum dipole radiation. We find that our model predicts a subset of X-ray flares seen in some gamma-ray bursts. We can further explain the diversity of X-ray plateaus by altering the radiative efficiency and measure the braking index of newly born millisecond magnetars. We measure the braking index of GRB061121 as $n=4.85^{+0.11}_{-0.15}$ suggesting the millisecond-magnetar born in this gamma-ray burst spins down predominantly through gravitational-wave emission.


2017 ◽  
Vol 607 ◽  
pp. A121 ◽  
Author(s):  
M. G. Bernardini ◽  
G. Ghirlanda ◽  
S. Campana ◽  
P. D’Avanzo ◽  
J.-L. Atteia ◽  
...  

The delay in arrival times between high and low energy photons from cosmic sources can be used to test the violation of the Lorentz invariance (LIV), predicted by some quantum gravity theories, and to constrain its characteristic energy scale EQG that is of the order of the Planck energy. Gamma-ray bursts (GRBs) and blazars are ideal for this purpose thanks to their broad spectral energy distribution and cosmological distances: at first order approximation, the constraints on EQG are proportional to the photon energy separation and the distance of the source. However, the LIV tiny contribution to the total time delay can be dominated by intrinsic delays related to the physics of the sources: long GRBs typically show a delay between high and low energy photons related to their spectral evolution (spectral lag). Short GRBs have null intrinsic spectral lags and are therefore an ideal tool to measure any LIV effect. We considered a sample of 15 short GRBs with known redshift observed by Swift and we estimate a limit on EQG ≳ 1.5 × 1016 GeV. Our estimate represents an improvement with respect to the limit obtained with a larger (double) sample of long GRBs and is more robust than the estimates on single events because it accounts for the intrinsic delay in a statistical sense.


2012 ◽  
Vol 8 (S290) ◽  
pp. 263-264
Author(s):  
Liang Li ◽  
En-Wei Liang ◽  
He Gao ◽  
Bing Zhang

AbstractWell-sampled optical lightcurves of 146 gamma-ray bursts (GRBs) are compiled from literature. We identify possible emission components based on our empirical fits and present statistical analysis for these components. We find that the flares are related to prompt emission, suggesting that they could have the same origin in different episodes. The shallow decay segment is not correlated with prompt gamma-rays. It likely signals a long-lasting injected wind from GRB central engines. Early after onset peak is closely related with prompt emission. The ambient medium density profile is likely n ∝ r−1. No correlation between the late re-brightening bump and prompt gamma-rays or the onset bump is found. They may be from another jet component.


2020 ◽  
Vol 492 (3) ◽  
pp. 3622-3630
Author(s):  
Lin Lan ◽  
Rui-Jingi Lu ◽  
Hou-Jun Lü ◽  
Jun Shen ◽  
Jared Rice ◽  
...  

ABSTRACT Short gamma-ray bursts (GRB) with extended emission (EE) that are composed of an initial short hard spike followed by a long-lasting EE are thought to comprise a sucategory of short GRBs. The narrow energy band available during the Swift era, combined with a lack of spectral information, prevented the discovery of the intrinsic properties of these events. In this paper, we perform a systematic search of short GRBs with EE using all available Fermi/GBM data. The search identified 26 GBM-detected short GRBs with EE that are similar to GRB 060614 observed by Swift/BAT. We focus on investigating the spectral and temporal properties of both the hard spike and the EE component of all 26 GRBs, and explore differences and possible correlations between them. We find that while the peak energy (Ep) of the hard spikes is slightly harder than that of the EE, their fluences are comparable. The harder Ep seems to correspond to a larger fluence and peak flux, with a large scatter for both the hard spike and the EE component. Moreover, the Ep of both the hard spike and the EE are compared with other short GRBs. Finally, we also compare the properties of GRB 170817A with those of short GRBs with EE and find no significant statistical differences between them. We find that GRB 170817A has the lowest Ep, probably because it is off-axis.


2019 ◽  
Vol 627 ◽  
pp. A105 ◽  
Author(s):  
J. M. Burgess ◽  
M. Kole ◽  
F. Berlato ◽  
J. Greiner ◽  
G. Vianello ◽  
...  

Context. Simultaneousγ-ray measurements ofγ-ray burst spectra and polarization offer a unique way to determine the underlying emission mechanism(s) in these objects, as well as probing the particle acceleration mechanism(s) that lead to the observedγ-ray emission.Aims. We examine the jointly observed data from POLAR andFermi-GBM of GRB 170114A to determine its spectral and polarization properties, and seek to understand the emission processes that generate these observations. We aim to develop an extensible and statistically sound framework for these types of measurements applicable to other instruments.Methods. We leveraged the existing3MLanalysis framework to develop a new analysis pipeline for simultaneously modeling the spectral and polarization data. We derived the proper Poisson likelihood forγ-ray polarization measurements in the presence of background. The developed framework is publicly available for similar measurements with otherγ-ray polarimeters. The data are analyzed within a Bayesian probabilistic context and the spectral data from both instruments are simultaneously modeled with a physical, numerical synchrotron code.Results. The spectral modeling of the data is consistent with a synchrotron photon model as has been found in a majority of similarly analyzed single-pulse gamma-ray bursts. The polarization results reveal a slight trend of growing polarization in time reaching values of ∼30% at the temporal peak of the emission. We also observed that the polarization angle evolves with time throughout the emission. These results suggest a synchrotron origin of the emission but further observations of many GRBs are required to verify these evolutionary trends. Furthermore, we encourage the development of time-resolved polarization models for the prompt emission of gamma-ray bursts as the current models are not predictive enough to enable a full modeling of our current data.


Sign in / Sign up

Export Citation Format

Share Document