scholarly journals Comparison of the shape and temporal evolution of even and odd solar cycles

2020 ◽  
Vol 636 ◽  
pp. A11
Author(s):  
Jouni Takalo ◽  
Kalevi Mursula

Aims. We study the difference in the shape of solar cycles for even and odd cycles using the Wolf sunspot numbers and group sunspot numbers of solar cycles 1−23. We furthermore analyse the data of sunspot area sizes for even and odd cycles SC12−SC23 and sunspot group data for even and odd cycles SC8−SC23 to compare the temporal evolution of even and odd cycles. Methods. We applied the principal component analysis (PCA) to sunspot cycle data and studied the first two components, which describe the average cycle shape and cycle asymmetry. We used a distribution analysis to analyse the temporal evolution of the even and odd cycles and determined the skewness and kurtosis for even and odd cycles of sunspot group data. Results. The PCA confirms the existence of the Gnevyshev gap (GG) for solar cycles at about 40% from the start of the cycle. The temporal evolution of sunspot area data for even cycles shows that the GG exists at least at the 95% confidence level for all sizes of sunspots. On the other hand, the GG is shorter and statistically insignificant for the odd cycles of aerial sunspot data. Furthermore, the analysis of sunspot area sizes for even and odd cycles of SC12−SC23 shows that the greatest difference is at 4.2−4.6 years, where even cycles have a far smaller total area than odd cycles. The average area of the individual sunspots of even cycles is also smaller in this interval. The statistical analysis of the temporal evolution shows that northern sunspot groups maximise earlier than southern groups for even cycles, but are concurrent for odd cycles. Furthermore, the temporal distributions of odd cycles are slightly more leptokurtic than distributions of even cycles. The skewnesses are 0.37 and 0.49 and the kurtoses 2.79 and 2.94 for even and odd cycles, respectively. The correlation coefficient between skewness and kurtosis for even cycles is 0.69, and for odd cycles, it is 0.90. Conclusions. The separate PCAs for even and odd sunspot cycles show that odd cycles are more inhomogeneous than even cycles, especially in GSN data. Even cycles, however, have two anomalous cycles: SC4 and SC6. The variation in the shape of the early sunspot cycles suggests that there are too few and/or inaccurate measurements before SC8. According to the analysis of the sunspot area size data, the GG is more distinct in even than odd cycles. This may be partly due to sunspot groups maximizing earlier in the northern than in the southern hemisphere for even cycles. We also present another Waldmeier-type rule, that is, we find a correlation between skewness and kurtosis of the sunspot group cycles.

2021 ◽  
Vol 922 (1) ◽  
pp. 58
Author(s):  
V. M. S. Carrasco

Abstract Cornelis Tevel made sunspot observations during the period 1816–1836, including the Dalton Minimum. In this work, the first revision of these observations since Wolf incorporated them into his database is presented. On the one hand, the number of individual sunspots from Tevel’s drawings was counted. This is of special interest for the sunspot number reconstruction because this kind of information is not as common in historical sunspot records as the number of groups. Thus, Tevel could be considered for the future reconstruction of the sunspot number index. On the other hand, the number of groups counted according to modern sunspot group classifications finding significant misinterpretations with the number of groups assigned to Tevel in the existing databases. Tevel was a relevant sunspot observer in the Dalton Minimum. In fact, he was the observer with the highest number of groups observed in Solar Cycles 6 and 7 according to the existing sunspot group number databases. According to the raw group number recount in this work, the maximum amplitudes for Solar Cycles 6 and 7 are, respectively, 27% and 7% lower than those previously determined. Moreover, Solar Cycle 6 is the weakest solar cycle since the Maunder Minimum after applying these new counts. Group counts from Tevel’s observations were compared with those from relevant contemporary astronomers, demonstrating that Schwabe and Tevel systematically recorded a higher number of groups than Flaugergues and Derfflinger. In addition, sunspot areas and positions recorded by Tevel should be used with caution for scientific purposes.


2010 ◽  
Vol 6 (S273) ◽  
pp. 221-225 ◽  
Author(s):  
Laure Lefèvre ◽  
Frédéric Clette ◽  
Tunde Baranyi

AbstractWhen consulting detailed photospheric catalogs for solar activity studies spanning long time intervals, solar physicists face multiple limitations in the existing catalogs: finite or fragmented time coverage, limited time overlap between catalogs and even more importantly, a mismatch in contents and conventions. In view of a study of new sunspot-based activity indices, we have conducted a comprehensive survey of existing catalogs.In a first approach, we illustrate how the information from parallel catalogs can be merged to form a much more comprehensive record of sunspot groups. For this, we use the unique Debrecen Photoheliographic Data (DPD), which is already a composite of several ground observatories and SOHO data, and the USAF/Mount Wilson catalog from the Solar Optical Observing Network (SOON). We also describe our semi-interactive cross-identification method, which was needed to match the non-overlapping solar active region nomenclature, the most critical and subtle step when working with multiple catalogs. This effort, focused here first on the last two solar cycles, should lead to a better central database collecting all available sunspot group parameters to address future solar cycle studies beyond the traditional sunspot index time series Ri.


1968 ◽  
Vol 35 ◽  
pp. 174-177 ◽  
Author(s):  
M. G. Dmitrieva ◽  
M. Kopecký ◽  
G. V. Kuklin

Assuming the sunspot area to evolve smoothly and the sunspot-group lifetime distribution to be a monotonous decreasing function one can easily conclude that the function N(S), determining the number of sunspot groups having the area S at this moment, must increase monotonously and smoothly with decreasing area S.


2018 ◽  
Vol 13 (S340) ◽  
pp. 133-136 ◽  
Author(s):  
Emre Işık ◽  
Seda Işık ◽  
Bahar B. Kabasakal

AbstractThe tilt angle of a sunspot group is a critical quantity in the surface transport of magnetic flux and the solar dynamo. To contribute long-term databases of the tilt angle, we developed an IDL routine, which allows the user to interactively select and measure sunspot positions and areas on the solar disc. We measured the tilt angles of sunspot groups for solar cycles 19-24 (1954.6-2017.8), using the sunspot drawing database of Kandilli Observatory. The method is similar to that used in the discontinued Mt. Wilson and Kodaikanal databases, with the exception that sunspot groups were identified manually, which has improved the accuracy of the resulting tilt angles. We obtained cycle averages of the tilt angle and compared them with the values from other datasets, keeping the same group selection criteria. We conclude that the previously reported anti-correlation with the cycle strength needs further investigation.


Author(s):  
Hisashi Hayakawa ◽  
Tomoya Iju ◽  
Shoma Uneme ◽  
Bruno P Besser ◽  
Shunsuke Kosaka ◽  
...  

Abstract The solar activity during the Maunder Minimum (MM; 1645–1715) has been considered significantly different from the one captured in modern observations, in terms of sunspot group number and sunspot positions, whereas its actual amplitudes and distributions is still under active discussions. In its core period (1650/1660–1700), Martin Fogelius and Henrich Siverus have formed significant long-term series in the existing databases with numerous spotless days, as the 13th and 7th most active observers before the end of the MM. In this study, we have analysed their original archival records, revised their data, have removed significant contaminations of the apparent ‘spotless days’ in the existing databases, and cast caveats on the potential underestimation of the solar-cycle amplitude in the core MM. Still, they reported at best one sunspot group throughout their observational period and confirm the significant suppressed the solar cycles during the MM, which is also supported from the contemporary observations of Hook and Willoughby. Based on the revised data, we have also derived positions of notable sunspot groups, which Siverus recorded in 1671 (≈ N7.5° ± 2.5°), in comparison with those of Cassini's drawings (≈ N10° ± 1°). Their coincidence in position and chronology in corrected dates indicates these sunspot groups were probably the same recurrent active region (AR) and its significantly long lifespan (≥ 35 days) even during the MM.


2018 ◽  
Vol 13 (S340) ◽  
pp. 51-52
Author(s):  
J. Javaraiah

AbstractWe have analyzed the Debrecen Photoheliographic Data (DPD) and the Solar Optical Observing Network (SOON) sunspot group data during the period 1977 – 2015 and find that during the maximum of solar cycle 23 there is a large difference in the mean meridional motion of sunspot groups determined from DPD and SOON data.


Solar Physics ◽  
2021 ◽  
Vol 296 (1) ◽  
Author(s):  
Jouni Takalo

AbstractWe show that the time series of sunspot group areas has a gap, the so-called Gnevyshev gap (GG), between ascending and descending phases of the cycle and especially so for the even-numbered cycles. For the odd cycles this gap is less obvious, and is only a small decline after the maximum of the cycle. We resample the cycles to have the same length of 3945 days (about 10.8 years), and show that the decline is between 1445 – 1567 days after the start of the cycle for the even cycles, and extending sometimes until 1725 days from the start of the cycle. For the odd cycles the gap is a little earlier, 1332 – 1445 days after the start of the cycles with no extension. We analyze geomagnetic disturbances for Solar Cycles 17 – 24 using the Dst-index, the related Dxt- and Dcx-indices, and the Ap-index. In all of these time series there is a decline at the time, or somewhat after, the GG in the solar indices, and it is at its deepest between 1567 – 1725 days for the even cycles and between 1445 – 1567 days for the odd cycles. The averages of these indices for even cycles in the interval 1445 – 1725 are 46%, 46%, 18%, and 29% smaller compared to surrounding intervals of similar length for Dst, Dxt, Dcx, and Ap, respectively. For odd cycles the averages of the Dst- and Dxt-indices between 1322 – 1567 days are 31% and 12% smaller than the surrounding intervals, but not smaller for the Dcx-index and only 4% smaller for the Ap-index. The declines are significant at the 99% level for both even and odd cycles of the Dst-index and for the Dxt-, Dcx- and Ap-indices for even cycles. For odd cycles of the Dxt-index the significance is 95%, but the decline is insignificant for odd cycles of the Dcx- and Ap-indices.


2009 ◽  
Vol 1 (2) ◽  
Author(s):  
Jaroslav Střeštïk

AbstractIt is known that solar wind velocity fluctuates regularly with a period of about 1.3 years. This periodicity (and other signals with periods near to 1.1 and 0.9 years) has also been observed in biological data. The variation is a temporary feature, mostly being observed in the early 1990s. Here, the occurrence of these periodic signals in solar and geomagnetic activity between 1932 and 2005 has been investigated. The signal with 1.3 year period is present in geomagnetic activity only in a short interval after 1990 and to a lesser extent around 1942. At other times the signal is very weak or not present at all. Other periods are much lower amplitude and appear only sporadically throughout the time investigated. A connection between these periods and solar cycles (e.g. different even or odd cycles) has not been proven. It is possible that there is a long-term periodicity in the occurrence of the 1.3 year period but the time series data available is insufficient to confirm this. There are no such periodicities in solar activity. In order to gain a greater understanding of these periodic signals, we should search for their origin in interplanetary space.


1991 ◽  
Vol 130 ◽  
pp. 275-276
Author(s):  
Ladislav Hejna ◽  
Hubertus Wöhl

Abstract In this contribution, preliminary results of the main component analysis of Bartels diagram of time series of daily values of sunspot group numbers for solar cycles 18, 19 and 20 are presented. The results obtained suggest that the most significant feature in the longitudinal distribution of sunspot activity is the existence of preferred solar hemispheres alternating with a mean period of 2.5 Bartels rotations.


Sign in / Sign up

Export Citation Format

Share Document