scholarly journals The proper motion of sub-populations in ω Centauri

2020 ◽  
Vol 637 ◽  
pp. A46 ◽  
Author(s):  
N. Sanna ◽  
E. Pancino ◽  
A. Zocchi ◽  
F. R. Ferraro ◽  
P. B. Stetson

The galactic globular cluster ω Centauri is the most massive of its kind, with a complex mix of multiple stellar populations and several kinematic and dynamical peculiarities. Different mean proper motions have been detected among the three main sub-populations, implying that the most metal-rich one is of accreted origin. This particular piece of evidence has been a matter of debate because the available data have either not been sufficiently precise or limited to a small region of the cluster to ultimately confirm or refute the result. Using astrometry from the second Gaia data release and recent high-quality, multi-band photometry, we are now in a position to resolve the controversy. We reproduced the original analysis using the Gaia data and found that the three populations have the same mean proper motion. Thus, there is no need to invoke an accreted origin for the most metal-rich sub-population.

2017 ◽  
Vol 12 (S330) ◽  
pp. 210-213
Author(s):  
Tobias K. Fritz ◽  
Sean T. Linden ◽  
Paul Zivick ◽  
Nitya Kallivayalil ◽  
Jo Bovy

AbstractWe present our effort to measure the proper motions of satellites in the halo of the Milky Way with mainly ground based telescopes as a precursor on what is possible with Gaia. For our first study, we used wide field optical data from the LBT combined with a first epoch of SDSS observations, on the globular cluster Palomar 5 (Pal 5). Since Pal 5 is associated with a tidal stream it is very useful to constrain the shape of the potential of the Milky Way. The motion and other properties of the Pal 5 system constrain the inner halo of the Milky Way to be rather spherical. Further, we combined adaptive optics and HST to get an absolute proper motion of the globular cluster Pyxis. Using the proper motion and the line-of-sight velocity we find that the orbit of Pyxis is rather eccentric with its apocenter at more than 100 kpc and its pericenter at about 30 kpc. The dynamics excludes an association with the ATLAS stream, the Magellanic clouds, and all satellites of the Milky Way at least down to the mass of Leo II. However, the properties of Pyxis, like metallicity and age, point to an origin from a dwarf of at least the mass of Leo II. We therefore propose that Pyxis originated from an unknown relatively massive dwarf galaxy, which is likely today fully disrupted. Assuming that Pyxis is bound to the Milky Way we derive a 68% lower limit on the mass of the Milky Way of 9.5 × 1011 M⊙.


2018 ◽  
Vol 620 ◽  
pp. A175 ◽  
Author(s):  
J. Klüter ◽  
U. Bastian ◽  
M. Demleitner ◽  
J. Wambsganss

Context. Astrometric gravitational microlensing is an excellent tool to determine the mass of stellar objects. Using precise astrometric measurements of the lensed position of a background source in combination with accurate predictions of the positions of the lens and the unlensed source it is possible to determine the mass of the lens with an accuracy of a few percent. Aims. Making use of the recently published Gaia Data Release 2 (DR2) catalogue, we want to predict astrometric microlensing events caused by foreground stars with high proper motion passing a background source in the coming decades. Results. We selected roughly 148 000 high-proper-motion stars from Gaia DR2 with μtot > 150 mas yr−1 as potential lenses. We then searched for background sources close to their paths. Using the astrometric parameters of Gaia DR2, we calculated the future positions of source and lens. With a nested-intervals algorithm we determined the date and separation of the closest approach. Using Gaia DR2 photometry we determined an approximate mass of the lens, which we used to calculate the expected microlensing effects. Conclusions. We predict 3914 microlensing events caused by 2875 different lenses between 2010 and 2065, with expected shifts larger than 0.1 mas between the lensed and unlensed positions of the source. Of those, 513 events are expected to happen between 2014.5 and 2026.5 and might be measured by Gaia. For 127 events we also expect a magnification between 1 mmag and 3 mag.


2018 ◽  
Vol 616 ◽  
pp. A149 ◽  
Author(s):  
J. Maíz Apellániz ◽  
M. Pantaleoni González ◽  
R. H. Barbá ◽  
S. Simón-Díaz ◽  
I. Negueruela ◽  
...  

Context. The first Gaia Data Release (DR1) significantly improved the previously available proper motions for the majority of the Tycho-2 stars. Aims. We wish to detect runaway stars using Gaia DR1 proper motions and compare our results with previous searches. Methods. Runaway O stars and BA supergiants were detected using a 2D proper motion method. The sample was selected using Simbad, spectra from our GOSSS project, literature spectral types, and photometry processed using the code CHORIZOS. Results. We detect 76 runaway stars, 17 (possibly 19) of them with no prior identification as such, with an estimated detection rate of approximately one half of the real runaway fraction. An age effect appears to be present, with objects of spectral subtype B1 and later having traveled for longer distances than runaways of earlier subtypes. We also tentatively propose that the fraction of runaways is lower among BA supergiants that among O stars, but further studies using future Gaia data releases are needed to confirm this. The frequency of fast rotators is high among runaway O stars, which indicates that a significant fraction of them (and possibly the majority) is produced in supernova explosions.


2021 ◽  
Vol 162 (6) ◽  
pp. 244
Author(s):  
Katie M. Fasbender ◽  
David L. Nidever

Abstract Despite extensive searches and the relative proximity of solar system objects (SSOs) to Earth, many remain undiscovered and there is still much to learn about their properties and interactions. This work is the first in a series dedicated to detecting and analyzing SSOs in the all-sky NOIRLab Source Catalog (NSC). We search the first data release of the NSC with CANFind, a Computationally Automated NSC tracklet Finder. NSC DR1 contains 34 billion measurements of 2.9 billion unique objects, which CANFind categorizes as belonging to “stationary” (distant stars, galaxies) or moving (SSOs) objects via an iterative clustering method. Detections of stationary bodies for proper-motion μ ≤ 2.″5 hr−1 (0.°017 day−1) are identified and analyzed separately. Remaining detections belonging to high-μ objects are clustered together over single nights to form “tracklets.” Each tracklet contains detections of an individual moving object, and is validated based on spatial linearity and motion through time. Proper motions are then calculated and used to connect tracklets and other unassociated measurements over multiple nights by predicting their locations at common times, forming “tracks.” This method extracted 527,055 tracklets from NSC DR1 in an area covering 29,971 square degrees of the sky. The data show distinct groups of objects with similar observed μ in ecliptic coordinates, namely Main Belt Asteroids, Jupiter Trojans, and Kuiper Belt Objects. Apparent magnitudes range from 10 to 25 mag in the ugrizY and VR bands. Color–color diagrams show a bimodality of tracklets between primarily carbonaceous and siliceous groups, supporting prior studies.


1990 ◽  
Vol 141 ◽  
pp. 451-452
Author(s):  
R.-D. Scholz

From measurements of Tautenburg Schmidt plates with the APM in Cambridge positional accuracies per plate of 0.″05 for stars and of 0.″10 for galaxies were achieved. With 0.″3/100a accuracy in a single stellar proper motion we obtained the absolute proper motion of the M3 globular cluster in good agreement between the two pairs of plates used.


2017 ◽  
Vol 12 (S330) ◽  
pp. 249-250
Author(s):  
J. Sahlmann ◽  
R. van der Marel

AbstractWe used the Gaia data release 1 to study the proper motion fields of the Large and Small Magellanic Clouds (LMC, SMC) on the basis of the Tycho-Gaia Astrometric Solution (van der Marel & Sahlmann 2016). The Gaia LMC and SMC proper motions have similar accuracy and agree to within the uncertainties with existing HST proper motion measurements. Since Gaia probes the young stellar population and uses different methods with different systematics, this provides an external validation of both data sets and their underlying approaches.


2019 ◽  
Vol 14 (S351) ◽  
pp. 281-284
Author(s):  
G. Cordoni ◽  
A. P. Milone ◽  
A. Mastrobuono-Battisti ◽  
A. F. Marino ◽  
E. P. Lagioia ◽  
...  

AbstractThe internal dynamics of multiple stellar populations in Globular Clusters (GCs) provides unique constraints on the physical processes responsible for their formation. Specifically, the present-day kinematics of cluster stars, such as rotation and velocity dispersion, seems to be related to the initial configuration of the system. In recent work (Milone et al. 2018), we analyzed for the first time the kinematics of the different stellar populations in NGC 0104 (47 Tucanae) over a large field of view, exploiting the Gaia Data Release 2 proper motions combined with multi-band ground-based photometry. In this paper, based on the work by Cordoni et al. (2019), we extend this analysis to six GCs, namely NGC 0288, NGC 5904 (M 5), NGC 6121 (M 4), NGC 6752, NGC 6838 (M 71) and further explore NGC 0104. Among the analyzed clusters only NGC 0104 and NGC 5904 show significant rotation on the plane of the sky. Interestingly, multiple stellar populations in NGC 5904 exhibit different rotation curves.


1994 ◽  
Vol 161 ◽  
pp. 461-463
Author(s):  
R.-D. Scholz ◽  
N.V. Kharchenko

A proper motion study from Tautenburg Schmidt plates is presented for the globular cluster M 3 and its vicinity. The plates were scanned with the Automated Photographic Measuring (APM) system in Cambridge (UK). With a limiting magnitude of B = 21, proper motions of 2 to 3 mas/yr accuracy have been obtained for stars with B < 19. The proper motions were determined applying a stepwise regression method with 3rd order polynomials in the plate-to-plate solutions with about 2000 reference galaxies. We used the results for the determination of membership probabilities and looked for internal motions of M 3.


2017 ◽  
Vol 12 (S330) ◽  
pp. 85-87
Author(s):  
Dana I. Casetti-Dinescu ◽  
Terrence M. Girard ◽  
Michael Schriefer

AbstractGaia DR1 positions are used to astrometrically calibrate three epochs’ worth of Subaru SuprimeCam images in the fields of globular cluster NGC 2419 and the Sextans dwarf spheroidal galaxy. Distortion-correction “maps” are constructed from a combination of offset dithers and reference to Gaia DR1. These are used to derive absolute proper motions in the field of NGC 2419. Notably, we identify the photometrically-detected Monoceros structure in the foreground of NGC 2419 as a kinematically-cold population of stars, distinct from Galactic-field stars. This project demonstrates the feasibility of combining Gaia with deep, ground-based surveys, thus extending high-quality astrometry to magnitudes beyond the limits of Gaia.


2002 ◽  
Vol 207 ◽  
pp. 119-121
Author(s):  
L. Chen ◽  
J.J. Wang ◽  
J.L. Zhao

Positions and absolute proper motions of 264 stars in the field of about 70′ × 70′ around the globular cluster M13 were determined. In the astrometric reduction, three early and three late epoch plates taken with the 40cm refractor at Shensan, Shanghai, China, were used, with the time baseline of 73 years. The reduction was done using the central overlapping algorithm, with 5 Hipparcos stars and 38 Tycho-2 stars used as reference stars. Based on the reduced proper motion data, the membership probabilities of the sample stars were determined. An absolute proper motion of the cluster of 1.49 ± 0.36 mas yr−1 in right ascension and 3.06±0.35 mas yr−1 in declination was obtained. From this proper motion, together with distance and radial velocity data, we derived the space motion of M13 and via numerical integration also the orbit of the cluster in the Galaxy.


Sign in / Sign up

Export Citation Format

Share Document