scholarly journals Radio emission during the formation of stellar clusters in M 33

2020 ◽  
Vol 639 ◽  
pp. A27
Author(s):  
Edvige Corbelli ◽  
Jonathan Braine ◽  
Fatemeh S. Tabatabaei

Aims. We investigate thermal and nonthermal radio emission associated with the early formation and evolution phases of young stellar clusters (YSCs) selected by their mid-infrared (MIR) emission at 24 μm in M 33. We consider regions in their early formation period, which are compact and totally embedded in the molecular cloud, and in the more evolved and exposed phase. Methods. Thanks to recent radio continuum surveys between 1.4 and 6.3 GHz we are able to find radio source counterparts to more than 300 star forming regions of M 33. We identify the thermal free–free component for YSCs and their associated molecular complexes using the Hα line emission. Results. A cross-correlation of MIR and radio continuum is established from bright to very faint sources, with the MIR-to-radio emission ratio that shows a slow radial decline throughout the M 33 disk. We confirm the nature of candidate embedded sources by recovering the associated faint radio continuum luminosities. By selecting exposed YSCs with reliable Hα flux, we establish and discuss the tight relation between Hα and the total radio continuum at 5 GHz over four orders of magnitude. This holds for individual YSCs as well as for the giant molecular clouds hosting them, and allows us to calibrate the radio continuum–star formation rate relation at small scales. On average, about half of the radio emission at 5 GHz in YSCs is nonthermal with large scatter. For exposed but compact YSCs and their molecular clouds, the nonthermal radio continuum fraction increases with source brightness, while for large HII regions the nonthermal fraction is lower and shows no clear trend. This has been found for YSCs with and without identified supernova remnants and underlines the possible role of massive stars in triggering particle acceleration through winds and shocks: these particles diffuse throughout the native molecular cloud prior to cloud dispersal.

2013 ◽  
Vol 9 (S296) ◽  
pp. 183-187
Author(s):  
Il-Gyo Jeong ◽  
Bon-Chul Koo

AbstractWe present the results 12CO J = 1–0 line observations of eleven Galactic supernova remnants (SNRs) between l = 70° and 190° obtained using the Seoul Radio Astronomy Observatory (SRAO) 6-m radio telescope. We detected CO emission towards most of the remnants. In seven SNRs, molecular clouds show a good spatial relation with their radio morphology: G73.9+0.9, G84.2−0.8, G85.4+0.7, G85.9−0.6, G93.3+6.9 (DA530), 94.0+1.0 (3C 434.1), and G182.4+4.3. Two SNRs are particularly interesting. In G85.4+0.7, there is a filamentary molecular cloud aligned along the south-east boundary of the remnant. This cloud extends to the nearby Hii region G84.9+0.5. If the molecular cloud is associated with both the Hii region and the SNR, the distance to the SNR would be 5–7 kpc. In 3C 434.1, there is a large molecular cloud blocking the western half of the remnant where the radio continuum emission is faint. The cloud shows a very good spatial correlation with radio continuum features, which strongly suggests the physical association of the cloud with the SNR. This gives a distance of 3 kpc to the SNR. We performed 12CO J = 2–1 line observations of this cloud using Kölner Observatorium für Sub-Millimeter Astronomie (KOSMA) 3-m telescope and found a region where the 12CO J = 2–1/1–0 line ratio is high. We present a hydrodynamic model showing that 3C434.1 could have resulted from a SN explosion occurred just outside the boundary of a thin, molecular cloud.


2020 ◽  
Vol 498 (2) ◽  
pp. 2440-2455
Author(s):  
Yuxuan (宇轩) Yuan (原) ◽  
Mark R Krumholz ◽  
Blakesley Burkhart

ABSTRACT Molecular line observations using a variety of tracers are often used to investigate the kinematic structure of molecular clouds. However, measurements of cloud velocity dispersions with different lines, even in the same region, often yield inconsistent results. The reasons for this disagreement are not entirely clear, since molecular line observations are subject to a number of biases. In this paper, we untangle and investigate various factors that drive linewidth measurement biases by constructing synthetic position–position–velocity cubes for a variety of tracers from a suite of self-gravitating magnetohydrodynamic simulations of molecular clouds. We compare linewidths derived from synthetic observations of these data cubes to the true values in the simulations. We find that differences in linewidth as measured by different tracers are driven by a combination of density-dependent excitation, whereby tracers that are sensitive to higher densities sample smaller regions with smaller velocity dispersions, opacity broadening, especially for highly optically thick tracers such as CO, and finite resolution and sensitivity, which suppress the wings of emission lines. We find that, at fixed signal-to-noise ratio, three commonly used tracers, the J = 4 → 3 line of CO, the J = 1 → 0 line of C18O, and the (1,1) inversion transition of NH3, generally offer the best compromise between these competing biases, and produce estimates of the velocity dispersion that reflect the true kinematics of a molecular cloud to an accuracy of $\approx 10{{\ \rm per\ cent}}$ regardless of the cloud magnetic field strengths, evolutionary state, or orientations of the line of sight relative to the magnetic field. Tracers excited primarily in gas denser than that traced by NH3 tend to underestimate the true velocity dispersion by $\approx 20{{\ \rm per\ cent}}$ on average, while low-density tracers that are highly optically thick tend to have biases of comparable size in the opposite direction.


2021 ◽  
Vol 922 (2) ◽  
pp. 197
Author(s):  
Anna Wójtowicz ◽  
Łukasz Stawarz ◽  
Jerzy Machalski ◽  
Luisa Ostorero

Abstract The dynamical evolution and radiative properties of luminous radio galaxies and quasars of the FR II type, are well understood. As a result, through the use of detailed modeling of the observed radio emission of such sources, one can estimate various physical parameters of the systems, including the density of the ambient medium into which the radio structure evolves. This, however, requires rather comprehensive observational information, i.e., sampling the broadband radio continua of the targets at several frequencies, and imaging their radio structures with high resolution. Such observations are, on the other hand, not always available, especially for high-redshift objects. Here, we analyze the best-fit values of the source physical parameters, derived from extensive modeling of the largest currently available sample of FR II radio sources, for which good-quality multiwavelength radio flux measurements could be collected. In the analyzed data set, we notice a significant and nonobvious correlation between the spectral index of the nonthermal radio emission continuum, and density of the ambient medium. We derive the corresponding correlation parameters, and quantify the intrinsic scatter by means of Bayesian analysis. We propose that the discovered correlation could be used as a cosmological tool to estimate the density of ambient medium for large samples of distant radio galaxies. Our method does not require any detailed modeling of individual sources, and relies on limited observational information, namely, the slope of the radio continuum between the rest-frame frequencies 0.4 and 5 GHz, possibly combined with the total linear size of the radio structure.


2016 ◽  
Vol 11 (S322) ◽  
pp. 133-136
Author(s):  
N. Butterfield ◽  
C.C. Lang ◽  
E. A. C. Mills ◽  
D. Ludovici ◽  
J. Ott ◽  
...  

AbstractWe present NH3 and H64α+H63α VLA observations of the Radio Arc region, including the M0.20 – 0.033 and G0.10 – 0.08 molecular clouds. These observations suggest the two velocity components of M0.20 – 0.033 are physically connected in the south. Additional ATCA observations suggest this connection is due to an expanding shell in the molecular gas, with the centroid located near the Quintuplet cluster. The G0.10 – 0.08 molecular cloud has little radio continuum, strong molecular emission, and abundant CH3OH masers, similar to a nearby molecular cloud with no star formation: M0.25+0.01. These features detected in G0.10 – 0.08 suggest dense molecular gas with no signs of current star formation.


1998 ◽  
Vol 188 ◽  
pp. 117-120
Author(s):  
R. Petre ◽  
J. Keohane ◽  
U. Hwang ◽  
G. Allen ◽  
E. Gotthelf

The suggestion that the shocks of supernova remnants (SNR's) are cosmic ray acceleration sites dates back more than 40 years. While observations of nonthermal radio emission from SNR shells indicate the ubiquity of GeV cosmic ray production, there is still theoretical debate about whether SNR shocks accelerate particles up to the well-known “knee” in the primary cosmic ray spectrum at ~3,000 TeV. Recent X-ray observations of SN1006 and other SNR's may have provided the missing observational link between SNR shocks and high energy cosmic ray acceleration. We discuss these observations and their interpretation, and summarize our ongoing efforts to find evidence from X-ray observations of cosmic ray acceleration in the shells of other SNR's.


1980 ◽  
Vol 87 ◽  
pp. 473-478 ◽  
Author(s):  
V. I. Slysh ◽  
T. L. Wilson ◽  
T. Pauls ◽  
C. Henkel

A survey of 14 SNR's in the 4.8 GHz absorption line of H2CO shows that two of them, W28 and W44, possibly interact with molecular clouds. The interaction leads to acceleration of a part of the molecular cloud to a velocity of ∼5 km s-1 without a significant increase in the kinetic temperature or turbulence.


Galaxies ◽  
2021 ◽  
Vol 9 (1) ◽  
pp. 13
Author(s):  
Yoshiaki Sofue

Fine structure of the density distribution in giant molecular clouds (GMCs) around W43 (G31+00+90 km s−1at ∼5.5 kpc) was analyzed using the FUGIN* CO-line survey at high-angular (20”∼0.5 pc) and velocity (1.3 km s−1) resolutions (*Four-receiver-system Unbiased Galactic Imaging survey with the Nobeyama 45-m telescope). The GMCs show highly turbulent structures, and the eddies are found to exhibit spherical bubble morphology appearing in narrow ranges of velocity channels. The bubbles are dark in radio continuum emission, unlike usual supernova remnants (SNR) or HII regions, and in infrared dust emission, unlike molecular bubbles around young stellar objects. The CO bubbles are interpreted as due to fully evolved buried SNRs in molecular clouds after rapid exhaustion of the released energy in dense molecular clouds. Then, the CO bubbles may be a direct evidence for exciting and maintaining the turbulence in GMCs by SN origin. Search for CO bubbles as “dark SNRs” (dSNR) will have implication to estimate the supernova rate more accurately, and hence the star formation activity in the Milky Way.


1980 ◽  
Vol 33 (3) ◽  
pp. 639 ◽  
Author(s):  
JL Caswell ◽  
RF Haynes ◽  
WM Goss

The galactic plane between longitudes 3260 and 3400 has been searched for OH emiSSIOn and bsorption on the 1665 and 1667 MHz transitions. Forty main-line emission sources were detected (27 new ones, 13 previously known), and these constitute a sample complete to a weIl-defined lower intensity limit in this region of sky. Line profiles of all sources are shown and the statistics on variability and on the intensity ratios of the ground state transitions are summarized. The completeness of the sample encouraged us to make a first attempt to construct a luminosity function and to estimate the total number of such masers in our Galaxy. A study of the velocity structures showed these to be extremely varied, but none exceed a total range of 25 km s -1; combined velocity and polarization data are compatible with a Zeeman splitting origin for the circular polarization, and with this interpretation several sources yield an estimate for the line-of-sight magnetic field strength of a few mG. Preliminary investigations of the associations with other celestial objects indicate that many of the masers are loosely associated with HII region complexes, but in at least eight instances no HII regions have yet been detected; of these eight masers, two may be associated with supernova remnants and one with an unidentified nonthermal radio source.


2020 ◽  
Vol 72 (6) ◽  
Author(s):  
Yoshiaki Sofue

Abstract An almost perfect round hole of CO-line emission with a diameter of 3.7 pc was found in a molecular cloud (MC) centered on G35.75−0.25 (l = 35${{^{\circ}_{.}}}$75, b = −0${{^{\circ}_{.}}}$25) at radial velocity of 28 km s−1. The hole is quiet in radio continuum emission, unlike the usual supernova remnants (SNR), and the molecular edge is only weakly visible in 8 and 24 μm dust emissions. The hole may be either a fully evolved molecular bubble around a young stellar object (YSO), or a relic of a radio-quiet SNR that has already stopped expansion after rapid evolution in the dense MC as a buried SNR. Because G35.75 exhibits quite different properties from YSO-driven bubbles of the same size, we prefer the latter interpretation. The existence of such a “dark” SNR would affect the estimation of the supernova rate, and therefore the star formation history, in the Galaxy.


2019 ◽  
Vol 622 ◽  
pp. A171 ◽  
Author(s):  
Edvige Corbelli ◽  
Jonathan Braine ◽  
Carlo Giovanardi

We carried out deep searches for CO line emission in the outer disk of M 33, at R >  7 kpc, and examined the dynamical conditions that can explain variations in the mass distribution of the molecular cloud throughout the disk of M 33. We used the IRAM-30 m telescope to search for CO lines in the outer disk toward 12 faint mid-infrared (MIR) selected sources and in an area of the southern outer disk hosting MA1, a bright HII region. We detect narrow CO lines at the location of two MIR sources at galactocentric distances of about 8 kpc that are associated with low-mass young stellar clusters, and at four locations in the proximity of MA1. The paucity of CO lines at the location of weak MIR-selected sources probably arises because most of them are not star-forming sites in M 33, but background sources. Although very uncertain, the total molecular mass of the detected clouds around MA1 is lower than expected given the stellar mass of the cluster, because dispersal of the molecular gas is taking place as the HII region expands. The mean mass of the giant molecular clouds (GMCs) in M 33 decreases radially by a factor 2 from the center out to 4 kpc, then it stays constant until it drops at R >  7 kpc. We suggest that GMCs become more massive toward the center because of the fast rotation of the disk, which drives mass growth by coalescence of smaller condensations as they cross the arms. The analysis of both HI and CO spectral data gives the consistent result that corotation of the two main arms in this galaxy is at a radius of 4.7 ± 0.3 kpc, and spiral shock waves become subsonic beyond 3.9 kpc. Perturbations are quenched beyond 6.5 kpc, where CO lines have been detected only around sporadic condensations associated with UV and MIR emission.


Sign in / Sign up

Export Citation Format

Share Document