scholarly journals Dark supernova remnant

2020 ◽  
Vol 72 (6) ◽  
Author(s):  
Yoshiaki Sofue

Abstract An almost perfect round hole of CO-line emission with a diameter of 3.7 pc was found in a molecular cloud (MC) centered on G35.75−0.25 (l = 35${{^{\circ}_{.}}}$75, b = −0${{^{\circ}_{.}}}$25) at radial velocity of 28 km s−1. The hole is quiet in radio continuum emission, unlike the usual supernova remnants (SNR), and the molecular edge is only weakly visible in 8 and 24 μm dust emissions. The hole may be either a fully evolved molecular bubble around a young stellar object (YSO), or a relic of a radio-quiet SNR that has already stopped expansion after rapid evolution in the dense MC as a buried SNR. Because G35.75 exhibits quite different properties from YSO-driven bubbles of the same size, we prefer the latter interpretation. The existence of such a “dark” SNR would affect the estimation of the supernova rate, and therefore the star formation history, in the Galaxy.

2014 ◽  
pp. 41-51 ◽  
Author(s):  
Horta de ◽  
M.D. Filipovic ◽  
E.J. Crawford ◽  
F.H. Stootman ◽  
T.G. Pannuti ◽  
...  

We present an analysis of a new Australia Telescope Compact Array (ATCA) radio-continuum observation of supernova remnant (SNR) G1.9+0.3, which at an age of ~181?25 years is the youngest known in the Galaxy. We analysed all available radio-continuum observations at 6-cm from the ATCA and Very Large Array. Using this data we estimate an expansion rate for G1.9+0.3 of 0.563%?0.078% per year between 1984 and 2009. We note that in the 1980's G1.9+0.3 expanded somewhat slower (0.484% per year) than more recently (0.641% per year). We estimate that the average spectral index between 20-cm and 6-cm, across the entire SNR is ?={0.72?0.26 which is typical for younger SNRs. At 6-cm, we detect an average of 6% fractionally polarised radio emission with a peak of 17%?3%. The polarised emission follows the contours of the strongest of X-ray emission. Using the new equipartition formula we estimate a magnetic field strength of B?273?G, which to date, is one of the highest magnetic field strength found for any SNR and consistent with G1.9+0.3 being a very young remnant.


1979 ◽  
Vol 84 ◽  
pp. 113-118
Author(s):  
R. Wielebinski

All sky surveys of the radio continuum emission give us the basic information on the distribution of the nonthermal emission in the Galaxy. At metre wavelengths, where nonthermal emission is dominant, good angular resolution is difficult to attain. For many years the best surveys near 2 m wavelength gave us a picture of the galaxy with ∼ 2° resolution. At centimetre wavelengths, where arc min resolution is available, the intense HII regions dominate the radio sky. Supernova remnants have a distribution somewhat similar to that of the discrete HII regions and must be delineated by various methods in high resolution galactic plane surveys in the decimetre wavelength range.


1999 ◽  
Vol 193 ◽  
pp. 610-611
Author(s):  
David I. Méndez ◽  
César Esteban ◽  
Miroslav D. Filipović ◽  
Matthias Ehle ◽  
Prank Haberl ◽  
...  

We present preliminary results on multi-wavelength observations of the Wolf-Rayet Blue Compact Dwarf Galaxy He2–10. These observations include Hα and continuum imaging, high-resolution Hα spectroscopy, high-resolution radio-continuum mapping at 6.3 and 3.5 cm and X-ray mapping. The deep Hα image reveals that the galaxy consists of a complex system of different star-forming knots surrounded by kpc-scale bubble-like and filamentary structures. The most interesting structure is a bipolar superbubble centered on the most intense star-formation knot. High-resolution spectroscopy of this structure indicates that it is expanding with a velocity in the range 75–250 km s−1. This kind of outflows is likely to be produced by the mechanical action of stellar winds and supernovae explosions in the intense starbursts that the galaxy hosts. This scenario is consistent with the finding of a very steep radio spectral index in the extended radio continuum emission (α = −0.59) that confirms the presence of a large number of supernova remnants in the galaxy.


2020 ◽  
Vol 494 (2) ◽  
pp. 1531-1538
Author(s):  
A Moranchel-Basurto ◽  
P F Velázquez ◽  
G Ares de Parga ◽  
E M Reynoso ◽  
E M Schneiter ◽  
...  

ABSTRACT We have performed 3D magnetohydrodynamics (MHD) numerical simulations with the aim of exploring the scenario in which the initial mass distribution of a supernova (SN) explosion is anisotropic. The purpose is to analyse if this scenario can also explain the radio-continuum emission and the expansion observed in young supernova remnants (SNRs). To study the expansion, synthetic polarized synchrotron emission maps were computed from the MHD simulations. We found a good agreement (under a number of assumptions) between this expansion study and previous observational results applied to Tycho’s SNR, which represents a good example of asymmetric young SNRs. Additionally, both the observed morphology and the brightness distribution are qualitatively reproduced.


2019 ◽  
Vol 489 (3) ◽  
pp. 4300-4310 ◽  
Author(s):  
A Sezer ◽  
T Ergin ◽  
R Yamazaki ◽  
H Sano ◽  
Y Fukui

ABSTRACT We present the results from the Suzaku X-ray Imaging Spectrometer observation of the mixed-morphology supernova remnant (SNR) HB9 (G160.9+2.6). We discovered recombining plasma (RP) in the western Suzaku observation region and the spectra here are well described by a model having collisional ionization equilibrium (CIE) and RP components. On the other hand, the X-ray spectra from the eastern Suzaku observation region are best reproduced by the CIE and non-equilibrium ionization model. We discuss possible scenarios to explain the origin of the RP emission based on the observational properties and concluded that the rarefaction scenario is a possible explanation for the existence of RP. In addition, the gamma-ray emission morphology and spectrum within the energy range of 0.2–300 GeV are investigated using 10 yr of data from the Fermi Large Area Telescope (LAT). The gamma-ray morphology of HB9 is best described by the spatial template of radio continuum emission. The spectrum is well fit to a log-parabola function and its detection significance was found to be 25σ. Moreover, a new gamma-ray point source located just outside the south-east region of the SNR’s shell was detected with a significance of 6σ. We also investigated the archival H i and CO data and detected an expanding shell structure in the velocity range of $-10.5$ and $+1.8$ km s−1 that is coinciding with a region of gamma-ray enhancement at the southern rim of the HB9 shell.


2007 ◽  
Vol 3 (S242) ◽  
pp. 180-181
Author(s):  
M. A. Trinidad ◽  
S. Curiel ◽  
J. M. Torrelles ◽  
L. F. Rodríguez ◽  
V. Migenes ◽  
...  

AbstractWe present simultaneous observations of continuum (3.5 and 1.3cm) and water maser line emission (1.3cm) carried out with the VLA-A toward the high-mass object IRAS 23139+5939. We detected two radio continuum sources at 3.5cm separated by 0”5 (~2400 AU), I23139 and I23139S. Based on the observed continuum flux density and the spectral index, we suggest that I23139 is a thermal radio jet associated with a high-mass YSO. On the other hand, based on the spatio-kinematical distribution of the water masers, together with the continuum emission information, we speculate that I23139S is also a jet source powering some of the masers detected in the region.


2014 ◽  
Vol 11 (S308) ◽  
pp. 383-389
Author(s):  
M. A. Aragón-Calvo ◽  
Mark C. Neyrinck ◽  
Joseph Silk

AbstractThe star formation history of galaxies is a complex process usually considered to be stochastic in nature, for which we can only give average descriptions such as the color-density relation. In this work we follow star-forming gas particles in a hydrodynamical N-body simulation back in time in order to study their initial spatial configuration. By keeping record of the time when a gas particle started forming stars we can produce Lagrangian gas-star isochrone surfaces delineating the surfaces of accreting gas that begin producing stars at different times. These surfaces form a complex a network of filaments in Eulerian space from which galaxies accrete cold gas. Lagrangian accretion surfaces are closely packed inside dense regions, intersecting each other, and as a result galaxies inside proto-clusters stop accreting gas early, naturally explaining the color dependence on density. The process described here has a purely gravitational / geometrical origin, arguably operating at a more fundamental level than complex processes such as AGN and supernovae, and providing a conceptual origin for the color-density relation.


2009 ◽  
Vol 5 (S266) ◽  
pp. 366-366
Author(s):  
Jura Borissova ◽  
Radostin Kurtev ◽  
Margaret M. Hanson ◽  
Leonid Georgiev ◽  
Valentin Ivanov ◽  
...  

AbstractWe are reporting some recent results from our long-term program aimed at characterizing the obscured present-day star cluster population in the Galaxy. Our goal is to expand the current census of the Milky Way's inner stellar disk to guide models seeking to understand the structure and recent star-formation history of our Galaxy. The immediate goal is to derive accurate cluster physical parameters using precise infrared photometry and spectroscopy. So far, we observed approximately 60 star cluster candidates selected from different infrared catalogs. Their nature, reddening, distance, age and mass are analyzed. Two of them, Mercer 3 and Mercer 5, are new obscured Milky Way globular clusters. Among the newly identified open clusters, the objects [DBS2003] 179, Mercer 23, Mercer 30, Mercer 70, and [DBS2003] 106 are particularly interesting because they contain massive young OB and Wolf–Rayet stars with strong emission lines.


1987 ◽  
Vol 115 ◽  
pp. 626-627 ◽  
Author(s):  
J.A. García-Barreto ◽  
P. Pişmiş

VLA observations have been made of the continuum emission at 20-cm from the barred spiral galaxy NGC 4314 with an angular resolution of 3.5 arcseconds that corresponds to a linear scale of approximately 156 pc at a distance to the galaxy. This resolution was sufficient to resolve the central region into several compact sources. The radiation is linearly polarized which may indicate a non-thermal origin. No emission was detected from the extended bar to a level of 130 Jy.


2015 ◽  
Vol 11 (S319) ◽  
pp. 64-65
Author(s):  
Brigitte Rocca-Volmerange

AbstractThe origin of the supermassive black hole masses MSMBH discovered at the highest redshifts is still actively debated. Moreover the statistically significant relation of MSMBH with bulge luminosities LV, extended on several magnitude orders, confirms a common physical process linking small (≤ 1pc) to large (kpcs) size scales. The Spectral Energy Distributions (SEDs) of two z=3.8 radio galaxies 4C41.17 and TN J2007-1316, best-fitted by evolved early type galaxy and starburst scenarios also imply masses of stellar remnants. Computed with the evolutionary code Pegase.3, the cumulated stellar black hole mass MsBH reach up to several 109M⊙, similar to MSMBH at same z. We propose the SMBH growth is due to the migration of the stellar dense residues (sBH) towards the galaxy core by dynamical friction. Discussed in terms of time-scales, this process which is linking AGN and star formation, also fully justifies the famous relation MSMBH-LV.


Sign in / Sign up

Export Citation Format

Share Document