scholarly journals Predictions for the hydrogen-free ejecta of pulsational pair-instability supernovae

2020 ◽  
Vol 640 ◽  
pp. A56 ◽  
Author(s):  
M. Renzo ◽  
R. Farmer ◽  
S. Justham ◽  
Y. Götberg ◽  
S. E. de Mink ◽  
...  

Present and upcoming time-domain astronomy efforts, in part driven by gravitational-wave follow-up campaigns, will unveil a variety of rare explosive transients in the sky. Here, we focus on pulsational pair-instability evolution, which can result in signatures that are observable with electromagnetic and gravitational waves. We simulated grids of bare helium stars to characterize the resulting black hole (BH) masses together with the ejecta composition, velocity, and thermal state. We find that the stars do not react “elastically” to the thermonuclear ignition in the core: there is not a one-to-one correspondence between pair-instability driven ignition and mass ejections, which causes ambiguity as to what is an observable pulse. In agreement with previous studies, we find that for initial helium core masses of 37.5 M⊙ ≲ MHe, init ≲ 41 M⊙, corresponding to carbon-oxygen core masses 27.5 M⊙ ≲ MCO ≲ 30.1 M⊙, the explosions are not strong enough to affect the surface. With increasing initial helium core mass, they become progressively stronger causing first large radial expansion (41 M⊙ ≲ MHe, init ≲ 42 M⊙, corresponding to 30.1 M⊙ ≲ MCO ≲ 30.8 M⊙) and, finally, also mass ejection episodes (for MHe, init ≳ 42 M⊙, or MCO ≳ 30.8 M⊙). The lowest mass helium core to be fully disrupted in a pair-instability supernova is MHe, init ≃ 80 M⊙, corresponding to MCO ≃ 55 M⊙. Models with MHe, init ≳ 200 M⊙ (MCO ≳ 114 M⊙) reach the photodisintegration regime, resulting in BHs with masses of MBH ≳ 125 M⊙. Although this is currently considered unlikely, if BHs from these models form via (weak) explosions, the previously-ejected material might be hit by the blast wave and convert kinetic energy into observable electromagnetic radiation. We characterize the hydrogen-free circumstellar material from the pulsational pair-instability of helium cores by simply assuming that the ejecta maintain a constant velocity after ejection. We find that our models produce helium-rich ejecta with mass of 10−3 M⊙ ≲ MCSM ≲ 40 M⊙, the larger values corresponding to the more massive progenitor stars. These ejecta are typically launched at a few thousand km s−1 and reach distances of ∼1012 − 1015 cm before the core-collapse of the star. The delays between mass ejection events and the final collapse span a wide and mass-dependent range (from subhour to 104 years), and the shells ejected can also collide with each other, powering supernova impostor events before the final core-collapse. The range of properties we find suggests a possible connection with (some) type Ibn supernovae.

2015 ◽  
Vol 453 (4) ◽  
pp. 4467-4484 ◽  
Author(s):  
Jon C. Mauerhan ◽  
G. Grant Williams ◽  
Douglas C. Leonard ◽  
Paul S. Smith ◽  
Alexei V. Filippenko ◽  
...  

Abstract We present seven epochs of spectropolarimetry of the Type IIb supernova (SN IIb) 2011dh in M51, spanning 86 d of its evolution. The first epoch was obtained 9 d after the explosion, when the photosphere was still in the depleted hydrogen layer of the stripped-envelope progenitor. Continuum polarization is securely detected at the level of P ≈ 0.5 per cent through day 14 and appears to diminish by day 30, which is different from the prevailing trends suggested by studies of other core-collapse SNe. Time-variable modulations in P and position angle are detected across P-Cygni line features. H α and He i polarization peak after 30 d and exhibit position angles roughly aligned with the earlier continuum, while O i and Ca ii appear to be geometrically distinct. We discuss several possibilities to explain the evolution of the continuum and line polarization, including the potential effects of a tidally deformed progenitor star, aspherical radioactive heating by fast-rising plumes of 56Ni from the core, oblique shock breakout, or scattering by circumstellar material. While these possibilities are plausible and guided by theoretical expectations, they are not unique solutions to the data. The construction of more detailed hydrodynamic and radiative-transfer models that incorporate complex aspherical geometries will be required to further elucidate the nature of the polarized radiation from SN 2011dh and other SNe IIb.


2014 ◽  
Vol 28 ◽  
pp. 1460172 ◽  
Author(s):  
LUCIA PAVAN ◽  
POL BORDAS ◽  
GERD PÜHLHOFER ◽  
MIROSLAV D. FILIPOVIC ◽  
AIN DE HORTA ◽  
...  

IGR J11014-6103 is a hard X-ray source discovered by INTEGRAL. Follow-up X-ray and radio observations revealed an elongated pulsar wind nebula formed by a neutron star escaping supersonically its parent supernova remnant SNR MSH 11-61A. The pulsar also emits highly collimated jets extending perpendicularly to the direction of motion. The jet has a continuous helical structure extending up to more than 10 parsecs. IGR J11014-6103 is a laboratory to study jet ejection in the wind of a pulsar and to constrain the core collapse supernova mechanism responsible for the observed pulsar kick velocity in excess of 1000 km/s.


2021 ◽  
Vol 16 (1) ◽  
Author(s):  
Bryn D. Webb ◽  
Irini Manoli ◽  
Elizabeth C. Engle ◽  
Ethylin W. Jabs

AbstractThere is a broad differential for patients presenting with congenital facial weakness, and initial misdiagnosis unfortunately is common for this phenotypic presentation. Here we present a framework to guide evaluation of patients with congenital facial weakness disorders to enable accurate diagnosis. The core categories of causes of congenital facial weakness include: neurogenic, neuromuscular junction, myopathic, and other. This diagnostic algorithm is presented, and physical exam considerations, additional follow-up studies and/or consultations, and appropriate genetic testing are discussed in detail. This framework should enable clinical geneticists, neurologists, and other rare disease specialists to feel prepared when encountering this patient population and guide diagnosis, genetic counseling, and clinical care.


Author(s):  
Guglielmo Costa ◽  
Alessandro Bressan ◽  
Michela Mapelli ◽  
Paola Marigo ◽  
Giuliano Iorio ◽  
...  

Abstract Pair-instability (PI) is expected to open a gap in the mass spectrum of black holes (BHs) between ≈40 − 65 M⊙ and ≈120 M⊙. The existence of the mass gap is currently being challenged by the detection of GW190521, with a primary component mass of $85^{+21}_{-14}$ M⊙. Here, we investigate the main uncertainties on the PI mass gap: the 12C(α, γ)16O reaction rate and the H-rich envelope collapse. With the standard 12C(α, γ)16O rate, the lower edge of the mass gap can be 70 M⊙ if we allow for the collapse of the residual H-rich envelope at metallicity Z ≤ 0.0003. Adopting the uncertainties given by the starlib database, for models computed with the 12C(α, γ)16O rate −1 σ, we find that the PI mass gap ranges between ≈80 M⊙ and ≈150 M⊙. Stars with MZAMS > 110 M⊙ may experience a deep dredge-up episode during the core helium-burning phase, that extracts matter from the core enriching the envelope. As a consequence of the He-core mass reduction, a star with MZAMS = 160 M⊙ may avoid the PI and produce a BH of 150 M⊙. In the −2 σ case, the PI mass gap ranges from 92 M⊙ to 110 M⊙. Finally, in models computed with 12C(α, γ)16O −3 σ, the mass gap is completely removed by the dredge-up effect. The onset of this dredge-up is particularly sensitive to the assumed model for convection and mixing. The combined effect of H-rich envelope collapse and low 12C(α, γ)16O rate can lead to the formation of BHs with masses consistent with the primary component of GW190521.


1985 ◽  
Vol 113 ◽  
pp. 139-160 ◽  
Author(s):  
Douglas C. Heggie

This review describes work on the evolution of a stellar system during the phase which starts at the end of core collapse. It begins with an account of the models of Hénon, Goodman, and Inagaki and Lynden-Bell, as well as evaporative models, and modifications to these models which are needed in the core. Next, these models are related to more detailed numerical calculations of gaseous models, Fokker-Planck models, N-body calculations, etc., and some problems for further work in these directions are outlined. The review concludes with a discussion of the relation between theoretical models and observations of the surface density profiles and statistics of actual globular clusters.


1993 ◽  
Vol 155 ◽  
pp. 572-572
Author(s):  
C.Y. Zhang

We have selected a sample of planetary nebulae, for which the core masses are determined using distance-independent parameters (Zhang and Kwok 1992). The chemical abundances of He, N, O, and C are taken from the literature for them. Relationships of the ratios of He/H, N/O, and C/O with various stellar parameters of planetary nebulae (PN), such as the core mass, the mass of the core plus the ionized nebular gas, the stellar age and temperature, are examined. It is found that the N/O increases with increasing mass, while the C/O first increases and then decreases with the core mass. No strong correlation seems to exist between the He/H and the core mass. A correlation of the N/O and He/H with the stellar temperature exists. The current dredge-up theory for the progenitor AGB stars cannot satisfactorily account for these patterns of chemical enrichment in PN. Furthermore, the correlations of the N/O and He/H with the stellar age and temperature indicate that besides the dredge-ups in the RG and AGB stages, physical processes that happen in the planetary nebula stage may also play a role in forming the observed patterns of chemical enrichment in the planetary nebulae.


2022 ◽  
pp. 152660282110709
Author(s):  
Naoki Fujimura ◽  
Hideaki Obara ◽  
Takaaki Nagano ◽  
Yukihisa Ogawa ◽  
Taira Kobayashi ◽  
...  

Purpose: To evaluate the efficacy of the Active Seal technology employed in the AFX endovascular aortic aneurysm system (AFX), during endovascular aneurysm repair (EVAR) in patients with abdominal aortic aneurysms (AAAs) having a conical proximal neck. Materials and Methods: A retrospective analysis of the EVAR for AAA with a conical proximal neck using the AFX was performed at 17 Japanese hospitals between January 2016 and August 2020. The conical proximal neck was defined as a cone-shaped proximal neck, with more than 10% diameter increase within a 15 mm length at the proximal landing zone. All anatomical analyses were performed in the core laboratory, and cases with parallel walls within the proximal neck adequate for the landing zone were excluded from the study. Results: This study included 53 patients, but only 39 patients (mean age, 76.6 ± 6.7 years; 87.0% males; mean aneurysm diameter, 52.0 ± 8.0 mm) were analyzed after being characterized as having a pure conical neck by the core laboratory. The mean proximal neck diameters at the lower renal artery and proximal edge of the aneurysm were 20.0 ± 2.9 mm and 27.5 ± 4.9 mm, respectively. The mean proximal neck length was 21.5 ± 6.0 mm. Instructions for use violations other than the conical neck were observed in 15 patients (38.5%). The VELA cuff was used in all cases; however, additional proximal cuff was required in 9 more cases (23.1%). The Active Seal technology was able to significantly extend the proximal sealing zone from 21.5 ± 6.0 to 26.0 ± 12.2 mm ( p = .047). Thirty-six patients completed the 12-month follow-up (one patient was lost to follow-up, and 2 patients died from causes unrelated to the aneurysm), and there were no type-1a and 3 endoleaks with only one reintervention (2.6%) related to type 1b endoleak in the 12-month period. Furthermore, there was no significant enlargement of the proximal neck diameter at 12 months (at 1 month: 20.6 ± 3.4 mm and at 12 months: 21.3 ± 3.8 mm; p = .420). Conclusion: The Active Seal technology of the AFX significantly extended the proximal seal zone and no type-1a endoleak and proximal neck dilation was observed in patients with conical proximal neck at 12 months.


2010 ◽  
Vol 6 (S270) ◽  
pp. 151-158
Author(s):  
Ralph E. Pudritz

AbstractWe review computational approaches to understanding the origin of the Initial Mass Function (IMF) during the formation of star clusters. We examine the role of turbulence, gravity and accretion, equations of state, and magnetic fields in producing the distribution of core masses - the Core Mass Function (CMF). Observations show that the CMF is similar in form to the IMF. We focus on feedback processes such as stellar dynamics, radiation, and outflows can reduce the accreted mass to give rise to the IMF. Numerical work suggests that filamentary accretion may play a key role in the origin of the IMF.


Sign in / Sign up

Export Citation Format

Share Document