scholarly journals Spectropolarimetry of SN 2011dh in M51: geometric insights on a Type IIb supernova progenitor and explosion

2015 ◽  
Vol 453 (4) ◽  
pp. 4467-4484 ◽  
Author(s):  
Jon C. Mauerhan ◽  
G. Grant Williams ◽  
Douglas C. Leonard ◽  
Paul S. Smith ◽  
Alexei V. Filippenko ◽  
...  

Abstract We present seven epochs of spectropolarimetry of the Type IIb supernova (SN IIb) 2011dh in M51, spanning 86 d of its evolution. The first epoch was obtained 9 d after the explosion, when the photosphere was still in the depleted hydrogen layer of the stripped-envelope progenitor. Continuum polarization is securely detected at the level of P ≈ 0.5 per cent through day 14 and appears to diminish by day 30, which is different from the prevailing trends suggested by studies of other core-collapse SNe. Time-variable modulations in P and position angle are detected across P-Cygni line features. H α and He i polarization peak after 30 d and exhibit position angles roughly aligned with the earlier continuum, while O i and Ca ii appear to be geometrically distinct. We discuss several possibilities to explain the evolution of the continuum and line polarization, including the potential effects of a tidally deformed progenitor star, aspherical radioactive heating by fast-rising plumes of 56Ni from the core, oblique shock breakout, or scattering by circumstellar material. While these possibilities are plausible and guided by theoretical expectations, they are not unique solutions to the data. The construction of more detailed hydrodynamic and radiative-transfer models that incorporate complex aspherical geometries will be required to further elucidate the nature of the polarized radiation from SN 2011dh and other SNe IIb.

2018 ◽  
Vol 615 ◽  
pp. A15 ◽  
Author(s):  
O. Sipilä ◽  
P. Caselli

Context. We study the evolution of chemical-abundance gradients using dynamical and static models of starless cores. Aims. We aim to quantify if the chemical abundance gradients given by a dynamical model of core collapse, which includes time-dependent changes in density and temperature, differ greatly from abundances derived from static models where the density and temperature structures of the core are kept fixed as the chemistry evolves. Methods. We developed a new one-dimensional spherically symmetric hydrodynamics code that couples the hydrodynamics equations with a comprehensive time-dependent gas–grain chemical model, including deuterium and spin-state chemistry, and radiative transfer calculations to derive self-consistent time-dependent chemical-abundance gradients. We apply the code to model the collapse of a starless core up to the point when the infall flow becomes supersonic. Results. The abundances predicted by the dynamical and static models are almost identical at early times during the quiescent phase of core evolution. After the onset of core collapse, the results from the two models begin to diverge: at late times the static model generally underestimates abundances in the high-density regions near the core center, and overestimates them in the outer parts of the core. Deuterated species are clearly overproduced by the static model near the center of the model core. On the other hand, simulated lines of NH3 and N2H+ are brighter in the dynamical model because they originate in the central part of the core where the dynamical model predicts higher abundances than the static model. The reason for these differences is that the static model ignores the history of the density and temperature profiles which has a large impact on the abundances, and therefore on the molecular lines. Our results also indicate that the use of a very limited chemical network in hydrodynamical simulations may lead to an overestimate of the collapse timescale, and in some cases may prevent the collapse altogether. Limiting the set of molecular coolants has a similar effect. In our model, most of the line cooling near the center of the core is due to HCN, CO, and NO. Conclusions. Our results show that the use of a static physical model is not a reliable method of simulating chemical abundances in starless cores after the onset of gravitational collapse. The abundance differences between the dynamical and static models translate to large differences in line emission profiles, showing that the difference between the models is at the observable level. The adoption of complex chemistry and a comprehensive set of cooling molecules is necessary to model the collapse adequately.


2020 ◽  
Vol 640 ◽  
pp. A56 ◽  
Author(s):  
M. Renzo ◽  
R. Farmer ◽  
S. Justham ◽  
Y. Götberg ◽  
S. E. de Mink ◽  
...  

Present and upcoming time-domain astronomy efforts, in part driven by gravitational-wave follow-up campaigns, will unveil a variety of rare explosive transients in the sky. Here, we focus on pulsational pair-instability evolution, which can result in signatures that are observable with electromagnetic and gravitational waves. We simulated grids of bare helium stars to characterize the resulting black hole (BH) masses together with the ejecta composition, velocity, and thermal state. We find that the stars do not react “elastically” to the thermonuclear ignition in the core: there is not a one-to-one correspondence between pair-instability driven ignition and mass ejections, which causes ambiguity as to what is an observable pulse. In agreement with previous studies, we find that for initial helium core masses of 37.5 M⊙ ≲ MHe, init ≲ 41 M⊙, corresponding to carbon-oxygen core masses 27.5 M⊙ ≲ MCO ≲ 30.1 M⊙, the explosions are not strong enough to affect the surface. With increasing initial helium core mass, they become progressively stronger causing first large radial expansion (41 M⊙ ≲ MHe, init ≲ 42 M⊙, corresponding to 30.1 M⊙ ≲ MCO ≲ 30.8 M⊙) and, finally, also mass ejection episodes (for MHe, init ≳ 42 M⊙, or MCO ≳ 30.8 M⊙). The lowest mass helium core to be fully disrupted in a pair-instability supernova is MHe, init ≃ 80 M⊙, corresponding to MCO ≃ 55 M⊙. Models with MHe, init ≳ 200 M⊙ (MCO ≳ 114 M⊙) reach the photodisintegration regime, resulting in BHs with masses of MBH ≳ 125 M⊙. Although this is currently considered unlikely, if BHs from these models form via (weak) explosions, the previously-ejected material might be hit by the blast wave and convert kinetic energy into observable electromagnetic radiation. We characterize the hydrogen-free circumstellar material from the pulsational pair-instability of helium cores by simply assuming that the ejecta maintain a constant velocity after ejection. We find that our models produce helium-rich ejecta with mass of 10−3 M⊙ ≲ MCSM ≲ 40 M⊙, the larger values corresponding to the more massive progenitor stars. These ejecta are typically launched at a few thousand km s−1 and reach distances of ∼1012 − 1015 cm before the core-collapse of the star. The delays between mass ejection events and the final collapse span a wide and mass-dependent range (from subhour to 104 years), and the shells ejected can also collide with each other, powering supernova impostor events before the final core-collapse. The range of properties we find suggests a possible connection with (some) type Ibn supernovae.


1985 ◽  
Vol 113 ◽  
pp. 139-160 ◽  
Author(s):  
Douglas C. Heggie

This review describes work on the evolution of a stellar system during the phase which starts at the end of core collapse. It begins with an account of the models of Hénon, Goodman, and Inagaki and Lynden-Bell, as well as evaporative models, and modifications to these models which are needed in the core. Next, these models are related to more detailed numerical calculations of gaseous models, Fokker-Planck models, N-body calculations, etc., and some problems for further work in these directions are outlined. The review concludes with a discussion of the relation between theoretical models and observations of the surface density profiles and statistics of actual globular clusters.


2012 ◽  
Vol 08 ◽  
pp. 151-162 ◽  
Author(s):  
ALAN P. MARSCHER

Relativistic jets in blazars on parsec scales can now be explored with direct imaging at radio wavelengths as well as observations of time variability of flux and linear polarization at various wavebands. The results thus far suggest that the millimeter-wave "core" is usually a standing, conical shock and that the jet plasma is turbulent. Disturbances and turbulent plasma crossing the standing shock can explain much of the observed variability, as well as the appearance of bright knots moving down the jet at superluminal apparent speeds. The core, located parsecs downstream of the central engine, appears to be the site of many of the outbursts observed at optical, X-ray, and γ-ray energies. Rotations in the optical polarization position angle prior to the passage of a knot through the millimeter-wave core provide evidence for helical magnetic fields that accelerate and collimate the jet before turbulence tangles the fields.


2020 ◽  
Vol 641 ◽  
pp. L10
Author(s):  
Takashi J. Moriya ◽  
Pablo Marchant ◽  
Sergei I. Blinnikov

We show that the luminous supernovae associated with ultra-long gamma-ray bursts can be related to the slow cooling from the explosions of hydrogen-free progenitors that are extended by pulsational pair-instability. We have recently shown that some rapidly-rotating hydrogen-free gamma-ray burst progenitors that experience pulsational pair-instability can keep an extended structure caused by pulsational pair-instability until the core collapse. These types of progenitors have large radii exceeding 10 R⊙ and they sometimes reach beyond 1000 R⊙ at the time of the core collapse. They are, therefore, promising progenitors of ultra-long gamma-ray bursts. Here, we perform light-curve modeling of the explosions of one extended hydrogen-free progenitor with a radius of 1962 R⊙. The progenitor mass is 50 M⊙ and 5 M⊙ exists in the extended envelope. We use the one-dimensional radiation hydrodynamics code STELLA in which the explosions are initiated artificially by setting given explosion energy and 56Ni mass. Thanks to the large progenitor radius, the ejecta experience slow cooling after the shock breakout and they become rapidly evolving (≲10 days), luminous (≳1043 erg s−1) supernovae in the optical even without energy input from the 56Ni nuclear decay when the explosion energy is more than 1052 erg. The 56Ni decay energy input can affect the light curves after the optical light-curve peak and make the light-curve decay slowly when the 56Ni mass is around 1 M⊙. They also have a fast photospheric velocity above 10 000 km s−1 and a hot photospheric temperature above 10 000 K at around the peak luminosity. We find that the rapid rise and luminous peak found in the optical light curve of SN 2011kl, which is associated with the ultra-long gamma-ray burst GRB 111209A, can be explained as the cooling phase of the extended progenitor. The subsequent slow light-curve decline can be related to the 56Ni decay energy input. The ultra-long gamma-ray burst progenitors we proposed recently can explain both the ultra-long gamma-ray burst duration and the accompanying supernova properties. When the gamma-ray burst jet is off-axis or choked, the luminous supernovae could be observed as fast blue optical transients without accompanying gamma-ray bursts.


2020 ◽  
Vol 228 ◽  
pp. 00023
Author(s):  
J. Ricardo Rizzo ◽  
Alessia Ritacco ◽  
Cristobal Bordiu

Luminous Blue Variable (LBV) stars are evolved massive objects, previous to core-collapse supernova. LBVs are characterized by photometric and spectroscopic variability, produced by strong and dense winds, mass-loss events and very intense UV radiation. LBVs strongly disturb their surroundings by heating and shocking, and produce important amounts of dust. The study of the circumstellar material is therefore crucial to understand how these massive stars evolve, and also to characterize their effects onto the interstellar medium. The versatility of NIKA2 is a key in providing simultaneous observations of both the stellar continuum and the extended, circumstellar contribution. The NIKA2 frequencies (150 and 260 GHz) are in the range where thermal dust and free-free emission compete, and hence NIKA2 has the capacity to provide key information about the spatial distribution of circumstellar ionized gas, warm dust and nearby dark clouds; non-thermal emission is also possible even at these high frequencies. We show the results of the first NIKA2 survey towards five LBVs. We detected emission from four stars, three of them immersed in tenuous circumstellar material. The spectral indices show a complex distribution and allowed us to separate and characterize different components. We also found nearby dark clouds, with spectral indices typical of thermal emission from dust. Spectral indices of the detected stars are negative and hard to be explained only by free-free processes. In one of the sources, G79.29+0.46, we also found a strong correlation of the 1mm and 2mm continuum emission with respect to nested molecular shells at ≈1 pc from the LBV. The spectral index in this region clearly separates four components: the LBV star, a bubble characterized by free-free emission, and a shell interacting with a nearby infrared dark cloud.


1991 ◽  
Vol 147 ◽  
pp. 491-493
Author(s):  
J. Schmid-Burgk ◽  
R. Güsten ◽  
R. Mauersberger ◽  
A. Schulz ◽  
T. L. Wilson

We have recently discovered a large-scale (200″) outflow system in the core of OMC-1 (fig. 1), centered about 100″ South of IRc2 and extending over some 120″ (red lobe) resp. 60″ (blue) along a position angle of —31° (Schmid-Burgk et al. 1990). The blue lobe which might actually protrude into the HII region M42 is poorly defined in CO 2-1, but the red lobe reveals a number of remarkable properties which we summarize here:The outflow is very straight and smooth. Over the full length of 120″, the center of any cross scan deviates by not more than about 1″ from a straight line. This line passes to within 2″ the peak of the submm source FIR4 of OMC-1 (Mezger, Wink and Zylka 1990) and the mm continuum peak CS3 (Mundy et al. 1986); it also cuts across the red and blue SiO-outflow lobes recently discovered some 5-10″ to either side of FIR4 (Ziurys, Wilson and Mauersberger 1990). It thus seems that the “base” of our large-scale CO jet can be seen as well.


2016 ◽  
Vol 12 (S329) ◽  
pp. 54-58
Author(s):  
Jennifer L. Hoffman ◽  
G. Grant Williams ◽  
Douglas C. Leonard ◽  
Christopher Bilinski ◽  
Luc Dessart ◽  
...  

AbstractBecause polarization encodes geometrical information about unresolved scattering regions, it provides a unique tool for analyzing the 3-D structures of supernovae (SNe) and their surroundings. SNe of all types exhibit time-dependent spectropolarimetric signatures produced primarily by electron scattering. These signatures reveal physical phenomena such as complex velocity structures, changing illumination patterns, and asymmetric morphologies within the ejecta and surrounding material. Interpreting changes in polarization over time yields unprecedentedly detailed information about supernovae, their progenitors, and their evolution.Begun in 2012, the SNSPOL Project continues to amass the largest database of time-dependent spectropolarimetric data on SNe. I present an overview of the project and its recent results. In the future, combining such data with interpretive radiative transfer models will further constrain explosion mechanisms and processes that shape SN ejecta, uncover new relationships among SN types, and probe the properties of progenitor winds and circumstellar material.


2018 ◽  
Vol 14 (S342) ◽  
pp. 184-188
Author(s):  
J. C. Rodríguez-Ramírez ◽  
Elisabete M. de Gouveia Dal Pino ◽  
R. Alves Batista

AbstractVery high energy (VHE) emission has been detected from the radio galaxy NGC1275, establishing it as a potential cosmic-ray (CR) accelerator and a high energy neutrino source. We here study neutrino and γ-ray emission from the core of NGC1275 simulating the interactions of CRs assumed to be accelerated by magnetic reconnection, with the accreting plasma environment. To do this, we combine (i) numerical general relativistic (GR) magneto-hydrodynamics (MHD), (ii) Monte Carlo GR leptonic radiative transfer and, (iii) Monte Carlo interaction of CRs. A leptonic emission model that reproduces the SED in the [103-1010.5] eV energy range is used as the background target for photo-pion interactions+electromagnetic cascading. CRs injected with the power-law index κ=1.3 produce an emission profile that matches the VHE tail of NGC1275. The associated neutrino flux, below the IceCube limits, peaks at ∼PeV energies. However, coming from a single source, this neutrino flux may be an over-estimation.


Sign in / Sign up

Export Citation Format

Share Document