scholarly journals Evidence for supernova feedback sustaining gas turbulence in nearby star-forming galaxies

2020 ◽  
Vol 641 ◽  
pp. A70 ◽  
Author(s):  
Cecilia Bacchini ◽  
Filippo Fraternali ◽  
Giuliano Iorio ◽  
Gabriele Pezzulli ◽  
Antonino Marasco ◽  
...  

It is widely known that the gas in galaxy discs is highly turbulent, but there is much debate on which mechanism can energetically maintain this turbulence. Among the possible candidates, supernova (SN) explosions are likely the primary drivers but doubts remain on whether they can be sufficient in regions of moderate star formation activity, in particular in the outer parts of discs. Thus, a number of alternative mechanisms have been proposed. In this paper, we measure the SN efficiency η, namely the fraction of the total SN energy needed to sustain turbulence in galaxies, and verify that SNe can indeed be the sole driving mechanism. The key novelty of our approach is that we take into account the increased turbulence dissipation timescale associated with the flaring in outer regions of gaseous discs. We analyse the distribution and kinematics of HI and CO in ten nearby star-forming galaxies to obtain the radial profiles of the kinetic energy per unit area for both the atomic gas and the molecular gas. We use a theoretical model to reproduce the observed energy with the sum of turbulent energy from SNe, as inferred from the observed star formation rate (SFR) surface density, and the gas thermal energy. For the atomic gas, we explore two extreme cases in which the atomic gas is made either of cold neutral medium or warm neutral medium, and the more realistic scenario with a mixture of the two phases. We find that the observed kinetic energy is remarkably well reproduced by our model across the whole extent of the galactic discs, assuming η constant with the galactocentric radius. Taking into account the uncertainties on the SFR surface density and on the atomic gas phase, we obtain that the median SN efficiencies for our sample of galaxies are ⟨ηatom⟩ = 0.015−0.008+0.018 for the atomic gas and ⟨ηmol⟩ = 0.003−0.002+0.006 for the molecular gas. We conclude that SNe alone can sustain gas turbulence in nearby galaxies with only few percent of their energy and that there is essentially no need for any further source of energy.

2019 ◽  
Vol 493 (2) ◽  
pp. 2872-2909 ◽  
Author(s):  
Mélanie Chevance ◽  
J M Diederik Kruijssen ◽  
Alexander P S Hygate ◽  
Andreas Schruba ◽  
Steven N Longmore ◽  
...  

ABSTRACT It remains a major challenge to derive a theory of cloud-scale ($\lesssim100$ pc) star formation and feedback, describing how galaxies convert gas into stars as a function of the galactic environment. Progress has been hampered by a lack of robust empirical constraints on the giant molecular cloud (GMC) lifecycle. We address this problem by systematically applying a new statistical method for measuring the evolutionary timeline of the GMC lifecycle, star formation, and feedback to a sample of nine nearby disc galaxies, observed as part of the PHANGS-ALMA survey. We measure the spatially resolved (∼100 pc) CO-to-H α flux ratio and find a universal de-correlation between molecular gas and young stars on GMC scales, allowing us to quantify the underlying evolutionary timeline. GMC lifetimes are short, typically $10\!-\!30\,{\rm Myr}$, and exhibit environmental variation, between and within galaxies. At kpc-scale molecular gas surface densities $\Sigma _{\rm H_2}\ge 8\,\rm {M_\odot}\,{{\rm pc}}^{-2}$, the GMC lifetime correlates with time-scales for galactic dynamical processes, whereas at $\Sigma _{\rm H_2}\le 8\,\rm {M_\odot}\,{{\rm pc}}^{-2}$ GMCs decouple from galactic dynamics and live for an internal dynamical time-scale. After a long inert phase without massive star formation traced by H α (75–90 per cent of the cloud lifetime), GMCs disperse within just $1\!-\!5\,{\rm Myr}$ once massive stars emerge. The dispersal is most likely due to early stellar feedback, causing GMCs to achieve integrated star formation efficiencies of 4–10 per cent. These results show that galactic star formation is governed by cloud-scale, environmentally dependent, dynamical processes driving rapid evolutionary cycling. GMCs and H ii regions are the fundamental units undergoing these lifecycles, with mean separations of $100\!-\!300\,{{\rm pc}}$ in star-forming discs. Future work should characterize the multiscale physics and mass flows driving these lifecycles.


2018 ◽  
Vol 617 ◽  
pp. A143 ◽  
Author(s):  
Michał J. Michałowski ◽  
A. Karska ◽  
J. R. Rizzo ◽  
M. Baes ◽  
A. J. Castro-Tirado ◽  
...  

Context. Long gamma-ray bursts (GRBs) can potentially be used as a tool to study star formation and recent gas accretion onto galaxies. However, the information about gas properties of GRB hosts is scarce. In particular, very few carbon monoxide (CO) line detections of individual GRB hosts have been reported. It has also been suggested that GRB hosts have lower molecular gas masses than expected from their star formation rates (SFRs). Aims. The objectives of this paper are to analyse molecular gas properties of the first substantial sample of GRB hosts and test whether they are deficient in molecular gas. Methods. We obtained CO(2-1) observations of seven GRB hosts with the APEX and IRAM 30 m telescopes. We analysed these data together with all other hosts with previous CO observations. From these observations we calculated the molecular gas masses of these galaxies and compared them with the expected values based on their SFRs and metallicities. Reults. We obtained detections for 3 GRB hosts (980425, 080207, and 111005A) and upper limits for the remaining 4 (031203, 060505, 060814, and 100316D). In our entire sample of 12 CO-observed GRB hosts, 3 are clearly deficient in molecular gas, even taking into account their metallicity (980425, 060814, and 080517). Four others are close to the best-fit line for other star-forming galaxies on the SFR-MH2 plot (051022, 060505, 080207, and 100316D). One host is clearly molecule rich (111005A). Finally, the data for 4 GRB hosts are not deep enough to judge whether they are molecule deficient (000418, 030329, 031203, and 090423). The median value of the molecular gas depletion time, MH2/SFR, of GRB hosts is ∼0.3 dex below that of other star-forming galaxies, but this result has low statistical significance. A Kolmogorov–Smirnov test performed on MH2/SFR shows an only ∼2σ difference between GRB hosts and other galaxies. This difference can partly be explained by metallicity effects, since the significance decreases to ∼1σ for MH2/SFR versus metallicity. Conclusions. We found that any molecular gas deficiency of GRB hosts has low statistical significance and that it can be attributed to their lower metallicities; and thus the sample of GRB hosts has molecular properties that are consistent with those of other galaxies, and they can be treated as representative star-forming galaxies. However, the molecular gas deficiency can be strong for GRB hosts if they exhibit higher excitations and/or a lower CO-to-H2 conversion factor than we assume, which would lead to lower molecular gas masses than we derive. Given the concentration of atomic gas recently found close to GRB and supernova sites, indicating recent gas inflow, our results about the weak molecular deficiency imply that such an inflow does not enhance the SFRs significantly, or that atomic gas converts efficiently into the molecular phase, which fuels star formation. Only if the analysis of a larger GRB host sample reveals molecular deficiency (especially close to the GRB position) would this support the hypothesis of star formation that is directly fuelled by atomic gas.


2019 ◽  
Vol 627 ◽  
pp. A107 ◽  
Author(s):  
Ute Lisenfeld ◽  
Cong Kevin Xu ◽  
Yu Gao ◽  
Donovan L. Domingue ◽  
Chen Cao ◽  
...  

We present CO observations of 78 spiral galaxies in local merger pairs. These galaxies represent a subsample of a Ks-band-selected sample consisting of 88 close major-merger pairs (HKPAIRs), 44 spiral–spiral (S+S) pairs, and 44 spiral–elliptical (S+E) pairs, with separation <20 h−1 kpc and mass ratio <2.5. For all objects, the star formation rate (SFR) and dust mass were derived from Herschel PACS and SPIRE data, and the atomic gas mass, MHI, from the Green Bank Telescope HI observations. The complete data set allows us to study the relation between gas (atomic and molecular) mass, dust mass, and SFR in merger galaxies. We derive the molecular gas fraction (MH2/M*), molecular-to-atomic gas mass ratio (MH2/MHI), gas-to-dust mass ratio and SFE (= SFR/MH2) and study their dependences on pair type (S+S compared to S+E), stellar mass, and the presence of morphological interaction signs. We find an overall moderate enhancement (∼2×) in both molecular gas fraction (MH2/M*) and molecular-to-atomic gas ratio (MH2/MHI) for star-forming galaxies in major-merger pairs compared to non-interacting comparison samples, whereas no enhancement was found for the SFE nor for the total gas mass fraction ((MHI + MH2)/M*). When divided into S+S and S+E, low mass and high mass, and with and without interaction signs, there is a small difference in SFE, a moderate difference in MH2/M*, and a strong difference in MH2/MHI between subsamples. For the molecular-to-atomic gas ratio MH2/MHI, the difference between S+S and S+E subsamples is 0.55 ± 0.18 dex and between pairs with and without interaction sign 0.65 ± 0.16 dex. Together, our results suggest that (1) star formation enhancement in close major-merger pairs occurs mainly in S+S pairs after the first close encounter (indicated by interaction signs) because the HI gas is compressed into star-forming molecular gas by the tidal torque; and (2) this effect is much weakened in the S+E pairs.


2010 ◽  
Vol 6 (S277) ◽  
pp. 67-70
Author(s):  
N. Kuno ◽  
T. Tosaki ◽  
S. Onodera ◽  
R. Miura ◽  
K. Muraoka ◽  
...  

AbstractWe have conducted all disk imaging of M33 in 12CO(1-0) using the 45-m telescope at Nobeyama Radio Observatory. We present preliminary results of this project. The spatial resolution of ~ 80 pc is comparable to the size of GMCs. The identified GMCs show wide variety in star forming activity. The variety can be regarded as the difference of their evolutionary stage. We found that Kennicutt-Schmidt law breaks in GMC scale (~ 80 pc), although it is still valid in 1 kpc scale. The correlation between molecular gas fraction, fmol = Σ(H2)/Σ(HI+H2) and gas surface density shows two distinct sequences and shows that fmol tends to be higher near the center. We also made partial mapping 12CO(3-2) with ASTE telescope. These data show that the variation of physical properties of molecular gas are correlated with the GMC evolution and mass. That is, GMCs with more active star formation and more mass tend to have higher fraction of dense gas.


2020 ◽  
Vol 493 (1) ◽  
pp. L39-L43 ◽  
Author(s):  
Sara L Ellison ◽  
Mallory D Thorp ◽  
Lihwai Lin ◽  
Hsi-An Pan ◽  
Asa F L Bluck ◽  
...  

ABSTRACT Using a sample of 11 478 spaxels in 34 galaxies with molecular gas, star formation, and stellar maps taken from the ALMA-MaNGA QUEnching and STar formation (ALMaQUEST) survey, we investigate the parameters that correlate with variations in star formation rates on kpc scales. We use a combination of correlation statistics and an artificial neural network to quantify the parameters that drive both the absolute star formation rate surface density (ΣSFR), as well as its scatter around the resolved star-forming main sequence (ΔΣSFR). We find that ΣSFR is primarily regulated by molecular gas surface density ($\Sigma _{\rm H_2}$) with a secondary dependence on stellar mass surface density (Σ⋆), as expected from an ‘extended Kennicutt–Schmidt relation’. However, ΔΣSFR is driven primarily by changes in star formation efficiency (SFE), with variations in gas fraction playing a secondary role. Taken together, our results demonstrate that whilst the absolute rate of star formation is primarily set by the amount of molecular gas, the variation of star formation rate above and below the resolved star-forming main sequence (on kpc scales) is primarily due to changes in SFE.


2019 ◽  
Vol 624 ◽  
pp. A81 ◽  
Author(s):  
Allison W. S. Man ◽  
Matthew D. Lehnert ◽  
Joël D. R. Vernet ◽  
Carlos De Breuck ◽  
Theresa Falkendal

The objective of this work is to study how active galactic nuclei (AGN) influence star formation in host galaxies. We present a detailed investigation of the star-formation history and conditions of a z = 2.57 massive radio galaxy based on VLT/X-shooter and ALMA observations. The deep rest-frame ultraviolet spectrum contains photospheric absorption lines and wind features indicating the presence of OB-type stars. The most significantly detected photospheric features are used to characterize the recent star formation: neither instantaneous nor continuous star-formation history is consistent with the relative strength of the Si IIλ1485 and S Vλ1502 absorption. Rather, at least two bursts of star formation took place in the recent past, at 6+1-2 Myr and ≳20 Myr ago, respectively. We deduce a molecular H2 gas mass of (3.9 ± 1.0) × 1010 M⊙ based on ALMA observations of the [C I] 3P2−3P1 emission. The molecular gas mass is only 13% of its stellar mass. Combined with its high star-formation rate of (1020-170+190 M⊙ yr-1, this implies a high star-formation efficiency of (26 ± 8) Gyr−1 and a short depletion time of (38 ± 12) Myr. We attribute the efficient star formation to compressive gas motions in order to explain the modest velocity dispersions (⩽55 km s−1) of the photospheric lines and of the star-forming gas traced by [C I]. Because of the likely very young age of the radio source, our findings suggest that vigorous star formation consumes much of the gas and works in concert with the AGN to remove any residual molecular gas, and eventually quenching star formation in massive galaxies.


2019 ◽  
Vol 488 (3) ◽  
pp. 3904-3928 ◽  
Author(s):  
Ryan Leaman ◽  
Francesca Fragkoudi ◽  
Miguel Querejeta ◽  
Gigi Y C Leung ◽  
Dimitri A Gadotti ◽  
...  

ABSTRACT Stellar feedback plays a significant role in modulating star formation, redistributing metals, and shaping the baryonic and dark structure of galaxies – however, the efficiency of its energy deposition to the interstellar medium is challenging to constrain observationally. Here we leverage HST and ALMA imaging of a molecular gas and dust shell ($M_{\mathrm{ H}_2} \sim 2\times 10^{5}\, {\rm M}_{\odot }$) in an outflow from the nuclear star-forming ring of the galaxy NGC 3351, to serve as a boundary condition for a dynamical and energetic analysis of the outflowing ionized gas seen in our MUSE TIMER survey. We use starburst99 models and prescriptions for feedback from simulations to demonstrate that the observed star formation energetics can reproduce the ionized and molecular gas dynamics – provided a dominant component of the momentum injection comes from direct photon pressure from young stars, on top of supernovae, photoionization heating, and stellar winds. The mechanical energy budget from these sources is comparable to low luminosity active galactic neuclei, suggesting that stellar feedback can be a relevant driver of bulk gas motions in galaxy centres – although here ≲10−3 of the ionized gas mass is escaping the galaxy. We test several scenarios for the survival/formation of the cold gas in the outflow, including in situ condensation and cooling. Interestingly, the geometry of the molecular gas shell, observed magnetic field strengths and emission line diagnostics are consistent with a scenario where magnetic field lines aided survival of the dusty ISM as it was initially launched (with mass-loading factor ≲1) from the ring by stellar feedback. This system’s unique feedback-driven morphology can hopefully serve as a useful litmus test for feedback prescriptions in magnetohydrodynamical galaxy simulations.


2016 ◽  
Vol 11 (S321) ◽  
pp. 214-216
Author(s):  
Linda C. Watson

AbstractWe found that star-forming regions in extended ultraviolet (XUV) disks are generally consistent with the molecular-hydrogen Kennicutt-Schmidt law that applies within the inner, optical disk. This is true for star formation rates based on Hα + 24 μm data or FUV + 24 μm data. We estimated that the star-forming regions have ages of 1 − 7 Myr and propose that the presence or absence of molecular gas provides an additional “clock” that may help distinguish between aging and stochasticity as the explanation for the low Hα-to-FUV flux ratios in XUV disks. This contribution is a summary of the work originally presented in Watson et al. (2016).


Author(s):  
P Bonfini ◽  
A Zezas ◽  
M L N Ashby ◽  
S P Willner ◽  
A Maragkoudakis ◽  
...  

Abstract We constrain the mass distribution in nearby, star-forming galaxies with the Star Formation Reference Survey (SFRS), a galaxy sample constructed to be representative of all known combinations of star formation rate (SFR), dust temperature, and specific star formation rate (sSFR) that exist in the Local Universe. An innovative two-dimensional bulge/disk decomposition of the 2MASS/Ks-band images of the SFRS galaxies yields global luminosity and stellar mass functions, along with separate mass functions for their bulges and disks. These accurate mass functions cover the full range from dwarf galaxies to large spirals, and are representative of star-forming galaxies selected based on their infra-red luminosity, unbiased by AGN content and environment. We measure an integrated luminosity density j = 1.72 ± 0.93 × 109 L⊙  h−1 Mpc−3 and a total stellar mass density ρM = 4.61 ± 2.40 × 108 M⊙  h−1 Mpc−3. While the stellar mass of the average star-forming galaxy is equally distributed between its sub-components, disks globally dominate the mass density budget by a ratio 4:1 with respect to bulges. In particular, our functions suggest that recent star formation happened primarily in massive systems, where they have yielded a disk stellar mass density larger than that of bulges by more than 1 dex. Our results constitute a reference benchmark for models addressing the assembly of stellar mass on the bulges and disks of local (z = 0) star-forming galaxies.


Author(s):  
M Wienen ◽  
C M Brunt ◽  
C L Dobbs ◽  
D Colombo

Abstract Expansion of (sub)millimetre capabilities to high angular resolution offered with interferometers allows to resolve giant molecular clouds (GMCs) in nearby galaxies. This enables us to place the Milky Way in the context of other galaxies to advance our understanding of star formation in our own Galaxy. We thus remap 12CO (1 - 0) data along the Perseus spiral arm in the outer Milky Way to a fixed physical resolution and present the first spiral arm data cube at a common distance as it would be seen by an observer outside the Milky Way. To achieve this goal we calibrated the longitude-velocity structure of 12CO gas of the outer Perseus arm based on trigonometric distances and maser velocities provided by the BeSSeL survey. The molecular gas data were convolved to the same spatial resolution along the whole spiral arm and regridded on to a linear scale map with the coordinate system transformed to the spiral arm reference frame. We determined the width of the Perseus spiral arm to be 7.8 ± 0.2 km s−1 around the kinematic arm centre. To study the large scale structure we derived the 12CO gas mass surface density distribution of velocities shifted to the kinematic arm centre and arm length. This yields a variation of the gas mass surface density along the arm length and a compression of molecular gas mass at linear scale. We determined a thickness of ∼63 pc on average for the Perseus spiral arm and a centroid of the molecular layer of 8.7 pc.


Sign in / Sign up

Export Citation Format

Share Document