scholarly journals NRO Legacy Project: M33 all Disk Survey of Giant Molecular Clouds with NRO 45-m and ASTE 10-m telescopes

2010 ◽  
Vol 6 (S277) ◽  
pp. 67-70
Author(s):  
N. Kuno ◽  
T. Tosaki ◽  
S. Onodera ◽  
R. Miura ◽  
K. Muraoka ◽  
...  

AbstractWe have conducted all disk imaging of M33 in 12CO(1-0) using the 45-m telescope at Nobeyama Radio Observatory. We present preliminary results of this project. The spatial resolution of ~ 80 pc is comparable to the size of GMCs. The identified GMCs show wide variety in star forming activity. The variety can be regarded as the difference of their evolutionary stage. We found that Kennicutt-Schmidt law breaks in GMC scale (~ 80 pc), although it is still valid in 1 kpc scale. The correlation between molecular gas fraction, fmol = Σ(H2)/Σ(HI+H2) and gas surface density shows two distinct sequences and shows that fmol tends to be higher near the center. We also made partial mapping 12CO(3-2) with ASTE telescope. These data show that the variation of physical properties of molecular gas are correlated with the GMC evolution and mass. That is, GMCs with more active star formation and more mass tend to have higher fraction of dense gas.

2006 ◽  
Vol 2 (S237) ◽  
pp. 331-335
Author(s):  
Yu Gao

AbstractActive star formation (SF) is tightly related to the dense molecular gas in the giant molecular clouds' dense cores. Our HCN (measure of the dense molecular gas) survey in 65 galaxies (including 10 ultraluminous galaxies) reveals a tight linear correlation between HCN and IR (SF rate) luminosities, whereas the correlation between IR and CO (measure of the total molecular gas) luminosities is nonlinear. This suggests that the global SF rate depends more intimately upon the amount of dense molecular gas than the total molecular gas content. This linear relationship extends to both the dense cores in the Galaxy and the hyperluminous extreme starbursts at high-redshift. Therefore, the global SF law in dense gas appears to be linear all the way from dense cores to extreme starbursts, spanning over nine orders of magnitude in IR luminosity.


2018 ◽  
Vol 615 ◽  
pp. A122 ◽  
Author(s):  
S. König ◽  
S. Aalto ◽  
S. Muller ◽  
J. S. Gallagher III ◽  
R. J. Beswick ◽  
...  

Context. Minor mergers are important processes contributing significantly to how galaxies evolve across the age of the Universe. Their impact on the growth of supermassive black holes and star formation is profound – about half of the star formation activity in the local Universe is the result of minor mergers. Aims. The detailed study of dense molecular gas in galaxies provides an important test of the validity of the relation between star formation rate and HCN luminosity on different galactic scales – from whole galaxies to giant molecular clouds in their molecular gas-rich centers. Methods. We use observations of HCN and HCO+ 1−0 with NOEMA and of CO3−2 with the SMA to study the properties of the dense molecular gas in the Medusa merger (NGC 4194) at 1′′ resolution. In particular, we compare the distribution of these dense gas tracers with CO2−1 high-resolution maps in the Medusa merger. To characterize gas properties, we calculate the brightness temperature ratios between the three tracers and use them in conjunction with a non-local thermodynamic equilibrium (non-LTE) radiative line transfer model. Results. The gas represented by HCN and HCO+ 1−0, and CO3−2 does not occupy the same structures as the less dense gas associated with the lower-J CO emission. Interestingly, the only emission from dense gas is detected in a 200 pc region within the “Eye of the Medusa”, an asymmetric 500 pc off-nuclear concentration of molecular gas. Surprisingly, no HCN or HCO+ is detected for the extended starburst of the Medusa merger. Additionally, there are only small amounts of HCN or HCO+ associated with the active galactic nucleus. The CO3−2/2−1 brightness temperature ratio inside “the Eye” is ~2.5 – the highest ratio found so far – implying optically thin CO emission. The CO2−1/HCN 1−0 (~9.8) and CO2−1/HCO+ 1−0 (~7.9) ratios show that the dense gas filling factor must be relatively high in the central region, consistent with the elevated CO3−1/2−1 ratio. Conclusions. The line ratios reveal an extreme, fragmented molecular cloud population inside the Eye with large bulk temperatures (T > 300 K) and high gas densities (n(H2) > 104 cm-3). This is very different from the cool, self-gravitating structures of giant molecular clouds normally found in the disks of galaxies. The Eye of the Medusa is found at an interface between a large-scale minor axis inflow and the central region of the Medusa. Hence, the extreme conditions inside the Eye may be the result of the radiative and mechanical feedback from a deeply embedded, young and massive super star cluster formed due to the gas pile-up at the intersection. Alternatively, shocks from the inflowing gas entering the central region of the Medusa may be strong enough to shock and fragment the gas. For both scenarios, however, it appears that the HCN and HCO+ dense gas tracers are not probing star formation, but instead a post-starburst and/or shocked ISM that is too hot and fragmented to form newstars. Thus, caution is advised in taking the detection of emission from dense gas tracers as evidence of ongoing or imminent star formation.


2008 ◽  
Vol 4 (S256) ◽  
pp. 215-226
Author(s):  
Mónica Rubio

AbstractUnderstanding the process of star formation in low metallicity systems is one of the key studies in the early stages of galaxy evolution. The Magellanic Clouds, being the nearest examples of low metallicity systems, allow us to study in detail their star forming regions. As a consequence of their proximity we can resolve the molecular clouds and the regions of star formation individually. Therefore we can increase our knowledge of the interaction of young luminous stars with their environment. We will present results of multiwavelenghts studies of LMC and SMC massive star forming regions, which includes properties of the cold molecular gas, the embedded young population associated with molecular clouds, and the interaction of newly born stars with the surrounding interstellar medium, based on ASTE and APEX submillimeter observations complemented high sensitivity NIR groud based observations and Spitzer results.


2017 ◽  
Vol 608 ◽  
pp. A98 ◽  
Author(s):  
Q. Salomé ◽  
P. Salomé ◽  
M.-A. Miville-Deschênes ◽  
F. Combes ◽  
S. Hamer

NGC 5128 (Centaurus A) is one of the best targets to study AGN feedback in the local Universe. At 13.5 kpc from the galaxy, optical filaments with recent star formation lie along the radio jet direction. This region is a testbed for positive feedback, here through jet-induced star formation. Atacama Pathfinder EXperiment (APEX) observations have revealed strong CO emission in star-forming regions and in regions with no detected tracers of star formation activity. In cases where star formation is observed, this activity appears to be inefficient compared to the Kennicutt-Schmidt relation. We used the Atacama Large Millimeter/submillimeter Array (ALMA) to map the 12CO(1–0) emission all along the filaments of NGC 5128 at a resolution of 1.3′′ ~ 23.8pc. We find that the CO emission is clumpy and is distributed in two main structures: (i) the Horseshoe complex, located outside the HI cloud, where gas is mostly excited by shocks and where no star formation is observed, and (ii) the Vertical filament, located at the edge of the HI shell, which is a region of moderate star formation. We identified 140 molecular clouds using a clustering method applied to the CO data cube. A statistical study reveals that these clouds have very similar physical properties, such as size, velocity dispersion, and mass, as in the inner Milky Way. However, the range of radius available with the present ALMA observations does not enable us to investigate whether or not the clouds follow the Larson relation. The large virial parameter αvir of the clouds suggests that gravity is not dominant and clouds are not gravitationally unstable. Finally, the total energy injection in the northern filaments of Centaurus A is of the same order as in the inner part of the Milky Way. The strong CO emission detected in the northern filaments is an indication that the energy injected by the jet acts positively in the formation of dense molecular gas. The relatively high virial parameter of the molecular clouds suggests that the injected kinetic energy is too strong for star formation to be efficient. This is particularly the case in the horseshoe complex, where the virial parameter is the largest and where strong CO is detected with no associated star formation. This is the first evidence of AGN positive feedback in the sense of forming molecular gas through shocks, associated with low star formation efficiency due to turbulence injection by the interaction with the radio jet.


2012 ◽  
Vol 8 (S292) ◽  
pp. 19-28 ◽  
Author(s):  
Jonathan C. Tan ◽  
Suzanne N. Shaske ◽  
Sven Van Loo

AbstractAll stars are born in molecular clouds, and most in giant molecular clouds (GMCs), which thus set the star formation activity of galaxies. We first review their observed properties, including measures of mass surface density, Σ, and thus mass,M. We discuss cloud dynamics, concluding most GMCs are gravitationally bound. Star formation is highly clustered within GMCs, but overall is very inefficient. We compare properties of star-forming clumps with those of young stellar clusters (YSCs). The high central densities of YSCs may result via dynamical evolution of already-formed stars during and after star cluster formation. We discuss theoretical models of GMC evolution, especially addressing how turbulence is maintained, and emphasizing the importance of GMC collisions. We describe how feedback limits total star formation efficiency, ε, in clumps. A turbulent and clumpy medium allows higher ε, permitting formation of bound clusters even when escape speeds are less than the ionized gas sound speed.


1994 ◽  
Vol 140 ◽  
pp. 168-169
Author(s):  
Tomoharu Oka ◽  
Tetsuo Hasegawa ◽  
Masahiko Hayashi ◽  
Toshihiro Handa ◽  
Sei'ichi Sakamoto

AbstractWe report a large scale mapping observation of the Galactic center region in the CO (J=2-1) line using the Tokyo-NRO 60cm survey telescope. Distribution of the CO (J=2-1) emission in the I-V plane suggests that molecular clouds forms a huge complex (Nuclear Molecular cloud Complex, NMC). Tracers of star formation activities in the last 106-108 years show that star formation has occured in a ring ~ 100 pc in radius. Relative to this Star Forming Ring, the molecular gas is distributed mainly on the positive longitude side. This may indicate that much of the gas in NMC is in transient orbit to fall into the star forming ring or to the nucleus in the near future.


1994 ◽  
Vol 140 ◽  
pp. 232-233
Author(s):  
Seiichi Sakamoto ◽  
Tetsuo Hasegawa ◽  
Masahiko Hayashi ◽  
Toshihiro Handa ◽  
Tomoharu Oka

AbstractThe first results of large-area mapping observations of nearby giant molecular clouds in the CO(J=2-1) emission are presented. The CO(J=2-1)/CO(J=1-0) luminosity ratio is 0.75 and 0.62 for the Orion A and B clouds, respectively. These values are consistent with those observed typically in disks of galaxies (−0.6), and are significantly lower than large values (≳1) often observed in active star-forming regions in galaxies. Active star-forming regions in galaxies cannot be explained by ensemble of Orion-like GMCs; they may contain a different population of molecular clouds with high J-2-1/J=1-0 luminosity ratio.


2020 ◽  
Vol 495 (3) ◽  
pp. 2682-2712
Author(s):  
Selçuk Topal

ABSTRACT Molecular emission lines are essential tools to shed light on many questions regarding star formation in galaxies. Multiple molecular lines are particularly useful to probe different phases of star-forming molecular clouds. In this study, we investigate the physical properties of giant molecular clouds (GMCs) using multiple lines of CO, i.e. CO(1–0, 2–1, 3–2) and 13CO(1–0), obtained at selected 20 positions in the disc of NGC 0628. A total of 11 positions were selected over the radial cut, including the centre, and remaining 9 positions were selected across the southern and northern arms of the galaxy. A total of 13 out of 20 positions are brighter at $24\, \mu {\rm m}$ and ultraviolet (UV) emission and hosting significantly more H ii regions compared to the rest of the positions indicating opposite characteristics. Our line ratio analysis shows that the gas gets warmer and thinner as a function of radius from the galaxy centre up to 1.7 kpc, and then the ratios start to fluctuate. Our empirical and model results suggest that the UV-bright positions have colder and thinner CO gas with higher hydrogen and CO column densities. However, the UV-dim positions have relatively warmer CO gas with lower densities bathed in GMCs surrounded by less number of H ii regions. Analysis of multiwavelength infrared and UV data indicates that the UV-bright positions have higher star formation efficiency than that of the UV-dim positions.


1991 ◽  
Vol 147 ◽  
pp. 443-444
Author(s):  
C. Koempe ◽  
G. Joncas ◽  
J.G.A. Wouterloot ◽  
H. Meyerdierks

By now, it is well established that massive stars form in giant molecular clouds. Numerous studies have shown that star formation, instead of being spread uniformly throughout molecular clouds, occurs in dense condensations located within these clouds. The physical conditions in these condensations are therefore critical input parameters for any theory of star formation.


2020 ◽  
Vol 641 ◽  
pp. A24
Author(s):  
Tsan-Ming Wang ◽  
Chorng-Yuan Hwang

We investigated the influence of the random velocity of molecular gas on star-formation activities of six nearby galaxies. The physical properties of a molecular cloud, such as temperature and density, influence star-formation activities in the cloud. Additionally, local and turbulent motions of molecules in a cloud may exert substantial pressure on gravitational collapse and thus prevent or reduce star formation in the cloud. However, the influence of gas motion on star-formation activities remains poorly understood. We used data from the Atacama Large Millimeter/submillimeter Array to obtain 12CO(J = 1 − 0) flux and velocity dispersion. We then combined these data with 3.6 and 8 micron midinfrared data from the Spitzer Space Telescope to evaluate the effects of gas motion on star-formation activities in several nearby galaxies. We discovered that relatively high velocity dispersion in molecular clouds corresponds with relatively low star-formation activity. Considering the velocity dispersion as an additional parameter, we derived a modified Kennicutt-Schmidt law with a gas surface density power index of 0.84 and velocity dispersion power index of −0.61.


Sign in / Sign up

Export Citation Format

Share Document