scholarly journals A spectroscopic multiplicity survey of Galactic Wolf-Rayet stars

2020 ◽  
Vol 641 ◽  
pp. A26
Author(s):  
K. Dsilva ◽  
T. Shenar ◽  
H. Sana ◽  
P. Marchant

Context. It is now well established that the majority of massive stars reside in multiple systems. However, the effect of multiplicity is not sufficiently understood, resulting in a plethora of uncertainties about the end stages of massive-star evolution. In order to investigate these uncertainties, it is useful to study massive stars just before their demise. Classical Wolf-Rayet stars represent the final end stages of stars at the upper-mass end. The multiplicity fraction of these stars was reported to be ∼0.4 in the Galaxy but no correction for observational biases has been attempted. Aims. The aim of this study is to conduct a homogeneous radial-velocity survey of a magnitude-limited (V ≤ 12) sample of Galactic Wolf-Rayet stars to derive their bias-corrected multiplicity properties. The present paper focuses on 12 northern Galactic carbon-rich (WC) Wolf-Rayet stars observable with the 1.2 m Mercator telescope on the island of La Palma. Methods. We homogeneously measured relative radial velocities (RVs) for carbon-rich Wolf-Rayet stars using cross-correlation. Variations in the derived RVs were used to flag binary candidates. We investigated probable orbital configurations and provide a first correction of observational biases through Monte-Carlo simulations. Results. Of the 12 northern Galactic WC stars in our sample, seven show peak-to-peak RV variations larger than 10 km s−1, which we adopt as our detection threshold. This results in an observed spectroscopic multiplicity fraction of 0.58 with a binomial error of 0.14. In our campaign, we find a clear lack of short-period (P < ∼100 d), indicating that a large number of Galactic WC binaries likely reside in long-period systems. Finally, our simulations show that at the 10% significance level, the intrinsic multiplicity fraction of the Galactic WC population is at least 0.72.

2018 ◽  
Vol 14 (S344) ◽  
pp. 392-395
Author(s):  
Yulia Perepelitsyna ◽  
Simon Pustilnik

AbstractThe lowest metallicity massive stars in the Local Universe with $Z\sim \left( {{Z}_{\odot }}/50-{{Z}_{\odot }}/30 \right)$ are the crucial objects to test the validity of assumptions in the modern models of very low-metallicity massive star evolution. These models, in turn, have major implications for our understanding of galaxy and massive star formation in the early epochs. DDO68-V1 in a void galaxy DDO68 is a unique extremely metal-poor massive star. Discovered by us in 2008 in the HII region Knot3 with $Z={{Z}_{\odot }}/35\,\left[ 12+\log \left( \text{O/H} \right)\sim 7.14 \right]$, DDO68-V1 was identified as an LBV star. We present here the LBV lightcurve in V band, combining own new data and the last archive and/or literature data on the light of Knot3 over the 30 years. We find that during the years 2008-2011 the LBV have experienced a very rare event of ‘giant eruption’ with V-band amplitude of 4.5 mag ($V\sim {{24.5}^{m}}-{{20}^{m}}$).


1988 ◽  
Vol 108 ◽  
pp. 408-409
Author(s):  
André Maeder

SummaryIdeally, the evolutionary models for the precursor of SN 1987 A should account for both the SN properties and the observational constraints for massive stars with relevant mass and composition.Mass loss is an essential property of massive star evolution. Recent parametrisations of mass loss rates for galactic stars cover the whole HR diagram. There are indications that for given L and Teff values, is lower at lower metallicity and therefore is lower in the LMC than in the Galaxy, thus we take with f < 1. Various models of an intitial 20 M⊙ star with f=0.2, 0.4, 0.6 and 1.0 are constructed (cf. Fig. 1) with a metallicity Z=0.006 and a moderate overshooting dover=0.3 Hp. From these models, we suggest an initial mass on the zero age sequence of 17 to 18 M⊙. The pre-SN location in the HR diagram very much depends on the remaining stellar mass, or more precisely on the mass of the remaining H-rich envelope. A final location at log Teff ≃ 4.2 is obtained for a final mass of about 9.0 M⊙ (cf. Fig.1). Scaled to an initial value of 17 M⊙, this corresponds to a final mass of about 8 M⊙ and a remaining H-rich envelope of a few tenths of a solar mass at most. The stellar surface exhibits CNO equilibrium values with C/N ≃ 0.01 and O/N ≃ 0.1 in mass fraction, and an hydrogen content X (surf) = 0.39. The blue progenitor is obtained for f=0.4, i.e. for -values in the LMC equal to 40% of the galactic values.


2003 ◽  
Vol 212 ◽  
pp. 38-46
Author(s):  
Roberta M. Humphreys

Current observations of the S Dor/LBVs and candidates and the implications for their important role in massive star evolution are reviewed. Recent observations of the cool hypergiants are altering our ideas about their evolutionary state, their atmospheres and winds, and the possible mechanisms for their asymmetric high mass loss episodes which may involve surface activity and magnetic fields. Recent results for IRC+10420, ρ Cas and VY CMa are highlighted. S Dor/LBVs in eruption, and the cool hypergiants in their high mass loss phases with their optically thick winds are not what their apparent spectra and temperatures imply; they are then ‘impostors’ on the H-R diagram. The importance of the very most massive stars, like η Carinae and the ‘supernovae impostors’ are also discussed.


Author(s):  
Sylvia Ekström

After a brief introduction to stellar modeling, the main lines of massive star evolution are reviewed, with a focus on the nuclear reactions from which the star gets the needed energy to counterbalance its gravity. The different burning phases are described, as well as the structural impact they have on the star. Some general effects on stellar evolution of uncertainties in the reaction rates are presented, with more precise examples taken from the uncertainties of the 12C(α, γ)16O reaction and the sensitivity of the s-process on many rates. The changes in the evolution of massive stars brought by low or zero metallicity are reviewed. The impact of convection, rotation, mass loss, and binarity on massive star evolution is reviewed, with a focus on the effect they have on the global nucleosynthetic products of the stars.


2018 ◽  
Vol 14 (S344) ◽  
pp. 153-160
Author(s):  
Sylvia Ekström ◽  
Georges Meynet ◽  
Cyril Georgy ◽  
José Groh ◽  
Arthur Choplin ◽  
...  

AbstractMassive stars are the drivers of the chemical evolution of dwarf galaxies. We review here the basics of massive star evolution and the specificities of stellar evolution in low-Z environment. We discuss nucleosynthetic aspects and what observations could constrain our view on the first generations of stars.


2014 ◽  
Vol 9 (S307) ◽  
pp. 92-93
Author(s):  
N. Britavskiy ◽  
A. Z. Bonanos ◽  
A. Mehner

AbstractWe present the first systematic survey of dusty massive stars (RSGs, LBVs, sgB[e]) in nearby galaxies, with the goal of understanding their importance in massive star evolution. Using the fact that these stars are bright in mid-infrared colors due to dust, we provide a technique for selecting and identifying dusty evolved stars based on the results of Bonanos et al. (2009, 2010), Britavskiy et al. (2014), and archival Spitzer/IRAC photometry. We present the results of our spectroscopic follow-up of luminous infrared sources in the Local Group dwarf irregular galaxies: Pegasus, Phoenix, Sextans A and WLM. The survey aims to complete the census of dusty massive stars in the Local Group.


1999 ◽  
Vol 190 ◽  
pp. 192-199 ◽  
Author(s):  
N. Langer ◽  
A. Heger

The evolution of massive stars is far from being fully understood, as we outline by pointing to a number of open problems related to massive stars in the Magellanic Clouds. We argue that rotation may be a key ingredient in the physics of massive stars. We report on recent results obtained including rotation, and their relevance to these remaining questions.


2008 ◽  
Vol 676 (1) ◽  
pp. L29-L32 ◽  
Author(s):  
I. Hunter ◽  
I. Brott ◽  
D. J. Lennon ◽  
N. Langer ◽  
P. L. Dufton ◽  
...  

2007 ◽  
Vol 3 (S250) ◽  
pp. 301-306 ◽  
Author(s):  
Ignacio Negueruela ◽  
J. Simon Clark ◽  
Lucy J. Hadfield ◽  
Paul A. Crowther

AbstractWith a dynamical mass Mdyn ~ 1.3×105 M⊙ and a lower limit Mcl > 5 × 104 M⊙ from star counts, Westerlund 1 is the most massive young open cluster known in the Galaxy and thus the perfect laboratory to study massive star evolution. We have developed a comprehensive spectral classification scheme for supergiants based on features in the 6000–9000Å range, which allows us to identify > 30 very luminous supergiants in Westerlund 1 and ~ 100 other less evolved massive stars, which join the large population of Wolf-Rayet stars already known. Though detailed studies of these stars are still pending, preliminary rough estimates suggest that the stars we see are evolving to the red part of the HR diagram at approximately constant luminosity.


Sign in / Sign up

Export Citation Format

Share Document