scholarly journals Demonstration of a wideband submillimeter-wave low-noise receiver with 4–21 GHz IF output digitized by a high-speed 32 GSps ADC

2020 ◽  
Vol 640 ◽  
pp. L9
Author(s):  
T. Kojima ◽  
H. Kiuchi ◽  
K. Uemizu ◽  
Y. Uzawa ◽  
M. Kroug ◽  
...  

We report on a 275–500 GHz heterodyne receiver system in combination with a wideband intermediate-frequency (IF) backend to realize 17 GHz instantaneous bandwidth. The receiver frontend implements a heterodyne mixer module that integrates a superconductor-insulator-superconductor (SIS) mixer chip and a cryogenic low-noise preamplifier. The SIS mixer is developed based on high-current-density junction technologies to achieve a wideband radio frequency (RF) and IF bandwidth. The IF backend comprises an IF chain divided into two channels for 4.0–11.5 GHz and 11.3–21.0 GHz and an analog-to-digital converter (ADC) module that is capable of high-speed sampling at 32 Giga samples per second with 12.5 GHz bandwidth per channel and an effective number of bits of 6.5. The IF backend allows us to simultaneously cover the full 4–21 GHz IF range of the receiver frontend. The measured noise temperature of the receiver frontend was below three times the quantum noise (hf/kB) over the entire RF band. A dual-polarization sideband-separating receiver based on this technique could provide up to 64 GHz of instantaneous bandwidth, which demonstrates the possibility of future wideband radio astronomical observations with advanced submillimeter-wave heterodyne receivers.

2015 ◽  
Author(s):  
◽  
Dominique Guelord Kumamputu Ingala

This dissertation describes the development and construction of the Multi-frequency Interferometer Telescope for Radio Astronomy (MITRA) at the Durban University of Technology. The MITRA station consists of 2 antenna arrays separated by a baseline distance of 8 m. Each array consists of 8 Log-Periodic Dipole Antennas (LPDAs) operating from 200 MHz to 800 MHz. The design and construction of the LPDA antenna and receiver system is described. The receiver topology provides an equivalent noise temperature of 113.1 K and 55.1 dB of gain. The Intermediate Frequency (IF) stage was designed to produce a fixed IF frequency of 800 MHz. The digital Back-End and correlator were implemented using a low cost Software Defined Radio (SDR) platform and Gnu-Radio software. Gnu-Octave was used for data analysis to generate the relevant received signal parameters including total power, real, and imaginary, magnitude and phase components. Measured results show that interference fringes were successfully detected within the bandwidth of the receiver using a Radio Frequency (RF) generator as a simulated source. This research was presented at the IEEE Africon 2013 / URSI Session Mauritius, and published in the proceedings.


2011 ◽  
Vol 3 (2) ◽  
pp. 121-129 ◽  
Author(s):  
Ahmet Çağrı Ulusoy ◽  
Gang Liu ◽  
Andreas Trasser ◽  
Hermann Schumacher

This paper presents a hardware efficient receiver architecture, to be used in low-cost, ultra-high rate 60 GHz wireless communication systems. The receiver utilizes a simple, feed-forward carrier recovery concept, performing phase and frequency synchronization in the analog domain. This enables 1-bit baseband processing without a need of ultra-high speed and high precision analog-to-digital conversion, offering a strong simplification of the system architecture and comparatively low power consumption. In a first prototype implementation, the receiver is realized in a low-cost SiGe technology as two separate ICs: the 60 GHz/5 GHz downconverter, and the intermediate frequency synchronous demodulator. The simple synchronous reception concept is experimentally validated for up to 3.5 Gbit/s data rate, which constituted the limit of the existing experimental setup. Furthermore, the downconverter demonstrates that low-cost technologies (fop/fmax ~ 0.75) can be used to realize short-range data links at 60 GHz, with low-noise amplifiers in a more performant technology as needed.


1994 ◽  
Vol 140 ◽  
pp. 68-77
Author(s):  
T.G. Phillips

Various types of receivers can be used for millimeter and submillimeterwave astronomy. The choices are amplifiers or mixer detectors. For the millimeter band, in the past, maser and paramp devices have been successfully used, but in the last few years HEMT amplifiers have proved to be the best option up to about 40 GHz, because they are inexpensive, quite low noise (about 1-2 K/GHz), stable and wideband. However, currently, above ~40 GHz the best performance is obtained from mixer receivers and this review will address that topic only. When used in either interferometers or in single dish spectroscopy, the receivers measure simultaneously the amplitude and phase of the astronomical signal and are therefore fundamentally limited by the quantum noise inherent in the measurement process, which increases linearly with frequency. A receiver which achieves a noise temperature within a factor of 10 of this limit is considered to be well optimized, so that the usual criterion for the noise temperature characterizing a single side-band receiver is that it should be ≲ 10hv/k or equivalently ≲ 0.5 K/GHz.


2012 ◽  
Vol 4 (3) ◽  
pp. 299-307 ◽  
Author(s):  
Matthew Sieth ◽  
Sarah Church ◽  
Judy M. Lau ◽  
Patricia Voll ◽  
Todd Gaier ◽  
...  

We report on the development of W-band (75–110 GHz) heterodyne receiver technology for large-format astronomical arrays. The receiver system is designed to be both mass producible, so that the designs could be scaled to thousands of receiver elements, and modular. Most of the receiver functionality is integrated into compact monolithic microwave integrated circuit (MMIC) amplifier-based multichip modules. The MMIC modules include a chain of InP MMIC low-noise amplifiers, coupled-line bandpass filters, and sub-harmonic Schottky diode mixers. The receiver signals will be routed to and from the MMIC modules on a multilayer high-frequency laminate, which includes splitters, amplifiers, and frequency triplers. A prototype MMIC module has exhibited a band-averaged noise temperature of 41 K from 82 to 100 GHz and a gain of 29 dB at 15 K, which is the state-of-the-art for heterodyne multichip modules.


Machines ◽  
2020 ◽  
Vol 9 (1) ◽  
pp. 1
Author(s):  
Jing Wang ◽  
Zhihua Wan ◽  
Zhurong Dong ◽  
Zhengguo Li

The harmonic reducer, with its advantages of high precision, low noise, light weight, and high speed ratio, has been widely used in aerospace solar wing deployment mechanisms, antenna pointing mechanisms, robot joints, and other precision transmission fields. Accurately predicting the performance of the harmonic reducer under various application conditions is of great significance to the high reliability and long life of the harmonic reducer. In this paper, a set of automatic harmonic reducer performance test systems is designed. By using the CANOpen bus interface to control the servo motor as the drive motor, through accurately controlling the motor speed and rotation angle, collecting the angle, torque, and current in real time, the life cycle test of space harmonic reducer was carried out in high vacuum and low temperature environment on the ground. Then, the collected data were automatically analyzed and calculated. The test data of the transmission accuracy, backlash, and transmission efficiency of the space harmonic reducer were obtained. It is proven by experiments that the performance data of the harmonic reducer in space work can be more accurately obtained by using the test system mentioned in this paper, which is convenient for further research on related lubricating materials.


2016 ◽  
Vol 30 (2) ◽  
pp. 024001 ◽  
Author(s):  
Yasunori Fujii ◽  
Takafumi Kojima ◽  
Alvaro Gonzalez ◽  
Shin’ichiro Asayama ◽  
Matthias Kroug ◽  
...  
Keyword(s):  

Author(s):  
Eric W. Bryerton ◽  
Xiaobing Mei ◽  
Young-Min Kim ◽  
William Deal ◽  
Wayne Yoshida ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document