scholarly journals A perfect power-law spectrum even at the highest frequencies: The Toothbrush relic

2020 ◽  
Vol 642 ◽  
pp. L13
Author(s):  
K. Rajpurohit ◽  
F. Vazza ◽  
M. Hoeft ◽  
F. Loi ◽  
R. Beck ◽  
...  

Radio relics trace shock fronts generated in the intracluster medium (ICM) during cluster mergers. The particle acceleration mechanism at the shock fronts is not yet completely understood. We observed the Toothbrush relic with the Effelsberg and Sardinia Radio Telescope at 14.25 GHz and 18.6 GHz, respectively. Unlike previously claimed, the integrated spectrum of the relic closely follows a power law over almost three orders of magnitude in frequency, with a spectral index of α58 MHz18.6 GHz = −1.16 ± 0.03. Our finding is consistent with a power-law injection spectrum, as predicted by diffusive shock acceleration theory. The result suggests that there is only little magnetic field strength evolution downstream of the shock. From the lack of spectral steepening, we find that either the Sunyaev–Zeldovich decrement produced by the pressure jump is less extended than ∼600 kpc along the line of sight or, conversely, that the relic is located far behind in the cluster. For the first time, we detect linearly polarized emission from the “brush” at 18.6 GHz. Compared to 8.3 GHz, the degree of polarization across the brush increases at 18.6 GHz, suggesting a strong Faraday depolarization toward lower frequencies. The observed depolarization is consistent with an intervening magnetized screen that arises from the dense ICM containing turbulent magnetic fields. The depolarization, corresponding to a standard deviation of the rotation measures as high as σRM = 212 ± 23 rad m−2, suggests that the brush is located in or behind the ICM. Our findings indicate that the Toothbrush relic can be consistently explained by the standard scenario for relic formation.

1994 ◽  
Vol 11 (2) ◽  
pp. 175-179 ◽  
Author(s):  
M. H. Pope ◽  
D. B. Melrose

AbstractThe effect of diffusive shock acceleration on a distribution of particles is explored for multiple shocks, taking into account adiabatic expansion between the shocks. Specifically, the spectral index is calculated numerically for two cases: a sequence of identical shocks, and a sequence of pairs of shocks with alternating shock strength. How these two cases evolve to the asymptotic limit is examined, and it is shown that the evolution of the paired-shock case can be described by a sequence of identical shocks with shock strength equal to the mean of the two.


Solar Physics ◽  
1995 ◽  
Vol 157 (1-2) ◽  
pp. 349-366 ◽  
Author(s):  
M. Savopulos ◽  
J. J. Quenby ◽  
A. R. Bell

1993 ◽  
Vol 10 (3) ◽  
pp. 222-224 ◽  
Author(s):  
D.B. Melrose ◽  
M.H. Pope

AbstractDiffusive shock acceleration produces a power law momentum distribution f(p)α p−b, with b ≥ 4 for a single shock, and b = 4 for a single strong shock. It has been shown that the distribution for acceleration at a sequence of identical shocks is flatter, approaching f(p)α p−3 below a high energy knee, for an arbitrarily large number of shocks. We show how this flatter distribution arises and discuss the range of momenta over which it extends after a finite number of shocks.


1994 ◽  
Vol 142 ◽  
pp. 561-565
Author(s):  
Frank C. Jones

AbstractWe discuss the fundamental ideas of particle acceleration in plasma shocks with emphasis on those features that are required to produce the “universal” power-law spectrum. We compare shock acceleration with the more familiar second-order or stochastic acceleration and see that they are not too different in many respects. We discuss the features of shock acceleration that make it appealing and some of its problems as well.Subject headings: acceleration of particles — MHD — plasmas — shock waves


2008 ◽  
Vol 17 (09) ◽  
pp. 1483-1489
Author(s):  
JUN KATAOKA

We present the results from multiwavelength campaigns of three powerful gamma-ray quasars, PKS 1510-089, RBS 315 and Swift J0746.3+2548, recently organized with Suzaku. The Suzaku observation provided one of the highest S/N X-ray spectra ever reported between 0.3 and 50 keV. For these quasars, the X-ray spectrum is well represented by an extremely hard power-law with photon index Γ ≃ 1.2, but is augmented by an additional soft component apparently below 1 keV for PKS 1510-089, whereas a strong deficit of soft photons is observed in RBS 315. We model the broadband spectra of these powerful quasars and argue that the power of the jet is dominated by protons but with the number of electrons/positrons exceeding the number of protons by a factor ≃ 10. We also argue that an extremely hard X-ray spectra may result from a double power-law form of the injected electrons, with the break energy γ br ≃ 1000 corresponding to the anticipated threshold of diffusive shock acceleration.


1989 ◽  
Vol 104 (1) ◽  
pp. 95-103
Author(s):  
Wolfgang Dröge ◽  
Peter Meyer ◽  
Paul Evenson ◽  
Dan Moses

AbstractFor the period September 1978 to December 1982 we have identified 55 solar flare particle events for which our instruments on board the ISEE-3 (ICE) spacecraft detected electrons above 10 MeV. Combining our data with those from the ULEWAT spectrometer (MPI Garching and University of Maryland) electron spectra in the range from 0.1 to 100 MeV were obtained. The observed spectral shapes can be divided into two classes. The spectra of the one class can be fit by a single power law in rigidity over the entire observed range. The spectra of the other class deviate from a power law, instead exhibiting a steepening at low rigidities and a flattening at high rigidities. Events with power-law spectra are associated with impulsive (< 1 hr duration) soft X-ray emission, whereas events with hardening spectra are associated with long-duration (> 1 hr) soft X-ray emission. The characteristics of long-duration events are consistent with diffusive shock acceleration taking place high in the corona. Electron spectra of short-duration flares are well reproduced by the distribution functions derived from a model assuming simultaneous second-order Fermi acceleration and Coulomb losses operating in closed flare loops.


2004 ◽  
Vol 22 (8) ◽  
pp. 3063-3072 ◽  
Author(s):  
U. W. Langner ◽  
M. S. Potgieter

Abstract. The interest in the role of the solar wind termination shock and heliosheath in cosmic ray modulation studies has increased significantly as the Voyager 1 and 2 spacecraft approach the estimated position of the solar wind termination shock. The effect of the solar wind termination shock on charge-sign dependent modulation, as is experienced by galactic cosmic ray Helium (He++) and anomalous Helium (He+), is the main topic of this work, and is complementary to the previous work on protons, anti-protons, electrons, and positrons. The modulation of galactic and anomalous Helium is studied with a numerical model including a more fundamental and comprehensive set of diffusion coefficients, a solar wind termination shock with diffusive shock acceleration, a heliosheath and particle drifts. The model allows a comparison of modulation with and without a solar wind termination shock and is applicable to a number of cosmic ray species during both magnetic polarity cycles of the Sun. The modulation of Helium, including an anomalous component, is also done to establish charge-sign dependence at low energies. We found that the heliosheath is important for cosmic ray modulation and that its effect on modulation is very similar for protons and Helium. The local Helium interstellar spectrum may not be known at energies


Electronics ◽  
2021 ◽  
Vol 10 (15) ◽  
pp. 1802
Author(s):  
Eduardo Martinez-de-Rioja ◽  
Daniel Martinez-de-Rioja ◽  
Rafael López-Sáez ◽  
Ignacio Linares ◽  
Jose A. Encinar

This paper presents two designs of high-efficiency polarizer reflectarray antennas able to generate a collimated beam in dual-circular polarization using a linearly polarized feed, with application to high-gain antennas for data transmission links from a Cubesat. First, an 18 cm × 18 cm polarizer reflectarray operating in the 17.2–22.7 GHz band has been designed, fabricated, and tested. The measurements of the prototype show an aperture efficiency of 52.7% for right-handed circular polarization (RHCP) and 57.3% for left-handed circular polarization (LHCP), both values higher than those previously reported in related works. Then, a dual-band polarizer reflectarray is presented for the first time, which operates in dual-CP in the frequency bands of 20 GHz and 30 GHz. The proposed antenna technology enables a reduction of the complexity and cost of the feed chain to operate in dual-CP, as a linear-to-circular polarizer is no longer required. This property, combined with the lightweight, flat profile and low fabrication cost of printed reflectarrays, makes the proposed antennas good candidates for Cubesat applications.


2012 ◽  
Vol 756 (1) ◽  
pp. 97 ◽  
Author(s):  
Hyesung Kang ◽  
Dongsu Ryu ◽  
T. W. Jones

Sign in / Sign up

Export Citation Format

Share Document