scholarly journals PHANGS-MUSE: The Hii region luminosity function of local star-forming galaxies

Author(s):  
F. Santoro ◽  
K. Kreckel ◽  
F. Belfiore ◽  
B. Groves ◽  
E. Congiu ◽  
...  
1984 ◽  
Vol 110 ◽  
pp. 333-334
Author(s):  
J.A. Garcia-Barreto ◽  
B. F. Burke ◽  
M. J. Reid ◽  
J. M. Moran ◽  
A. D. Haschick

Magnetic fields play a major role in the general dynamics of astronomical phenomena and particularly in the process of star formation. The magnetic field strength in galactic molecular clouds is of the order of few tens of μG. On a smaller scale, OH masers exhibit fields of the order of mG and these can probably be taken as representative of the magnetic field in the dense regions surrounding protostars. The OH molecule has been shown to emit highly circular and linearly polarized radiation. That it was indeed the action of the magnetic field that would give rise to the highly polarized spectrum of OH has been shown by the VLBI observations of Zeeman pairs of the 1720 and 6035 MHz by Lo et. al. and Moran et. al. VLBI observations of W3 (OH) revealed that the OH emission was coming from numerous discrete locations and that all spots fell within the continuum contours of the compact HII region. The most detailed VLBI aperture synthesis experiment of the 1665 MHz emission from W3 (OH) was carried out by Reid et. al. who found several Zeeman pairs and a characteristic maser clump size of 30 mas. In this work, we report the results of a 5 station VLBI aperture synthesis experiment of the 1665 MHz OH emission from W3 (OH) with full polarization information. We produced VLBI synthesis maps of all Stokes parameters of 16 spectral features that showed elliptical polarization. The magnitude and direction of the magnetic field have been obtained by the detection of 7 Zeeman pairs. The three dimensional orientation of the magnetic field can be obtained, following the theoretical arguments of Goldreich et. al., from the observation of π and σ components.


2020 ◽  
Vol 495 (3) ◽  
pp. 3124-3159 ◽  
Author(s):  
Ryley Hill ◽  
Scott Chapman ◽  
Douglas Scott ◽  
Yordanka Apostolovski ◽  
Manuel Aravena ◽  
...  

ABSTRACT We present an extensive ALMA spectroscopic follow-up programme of the $z\, {=}\, 4.3$ structure SPT2349–56, one of the most actively star-forming protocluster cores known, to identify additional members using their [C ii] 158 μm and CO(4–3) lines. In addition to robustly detecting the 14 previously published galaxies in this structure, we identify a further 15 associated galaxies at $z\, {=}\, 4.3$, resolving 55$\, {\pm }\,$5 per cent of the 870 μm flux density at 0.5 arcsec resolution compared to 21 arcsec single-dish data. These galaxies are distributed into a central core containing 23 galaxies extending out to 300 kpc in diameter, and a northern extension, offset from the core by 400 kpc, containing three galaxies. We discovered three additional galaxies in a red Herschel-SPIRE source 1.5 Mpc from the main structure, suggesting the existence of many other sources at the same redshift as SPT2349–56 that are not yet detected in the limited coverage of our data. An analysis of the velocity distribution of the central galaxies indicates that this region may be virialized with a mass of (9$\pm 5)\, {\times }\, 10^{12}$  M⊙, while the two offset galaxy groups are about 30 and 60 per cent less massive and show significant velocity offsets from the central group. We calculate the [C ii] and far-infrared number counts, and find evidence for a break in the [C ii] luminosity function. We estimate the average SFR density within the region of SPT2349–56 containing single-dish emission (a proper diameter of 720 kpc), assuming spherical symmetry, to be roughly 4$\, {\times }\, 10^4$ M⊙ yr−1 Mpc−3; this may be an order of magnitude greater than the most extreme examples seen in simulations.


2020 ◽  
Vol 492 (4) ◽  
pp. 5297-5312 ◽  
Author(s):  
Eliab Malefahlo ◽  
Mario G Santos ◽  
Matt J Jarvis ◽  
Sarah V White ◽  
Jonathan T L Zwart

ABSTRACT We present the radio luminosity function (RLF) of optically selected quasars below 1 mJy, constructed by applying a Bayesian-fitting stacking technique to objects well below the nominal radio flux density limit. We test the technique using simulated data, confirming that we can reconstruct the RLF over three orders of magnitude below the typical 5σ detection threshold. We apply our method to 1.4-GHz flux densities from the Faint Images of the Radio Sky at Twenty-Centimeters (FIRST) survey, extracted at the positions of optical quasars from the Sloan Digital Sky Survey over seven redshift bins up to z = 2.15, and measure the RLF down to two orders of magnitude below the FIRST detection threshold. In the lowest redshift bin (0.2 < z < 0.45), we find that our measured RLF agrees well with deeper data from the literature. The RLF for the radio-loud quasars flattens below $\log _{10}[L_{1.4}/{\rm W\, Hz}^{-1}] \approx 25.5$ and becomes steeper again below $\log _{10}[L_{1.4}/{\rm W\, Hz}^{-1}] \approx 24.8$, where radio-quiet quasars start to emerge. The radio luminosity where radio-quiet quasars emerge coincides with the luminosity where star-forming galaxies are expected to start dominating the radio source counts. This implies that there could be a significant contribution from star formation in the host galaxies, but additional data are required to investigate this further. The higher redshift bins show a similar behaviour to the lowest z bin, implying that the same physical process may be responsible.


Author(s):  
James E. Upjohn ◽  
Michael J. I. Brown ◽  
Andrew M. Hopkins ◽  
Nicolas J. Bonne

AbstractWe measure the cosmic star formation history out to z = 1.3 using a sample of 918 radio-selected star-forming galaxies within the 2-deg2 COSMOS field. To increase our sample size, we combine 1.4-GHz flux densities from the VLA-COSMOS catalogue with flux densities measured from the VLA-COSMOS radio continuum image at the positions of I < 26.5 galaxies, enabling us to detect 1.4-GHz sources as faint as 40 μJy. We find that radio measurements of the cosmic star formation history are highly dependent on sample completeness and models used to extrapolate the faint end of the radio luminosity function. For our preferred model of the luminosity function, we find the star formation rate density increases from 0.017 M⊙ yr−1 Mpc−3 at z ∼ 0.225 to 0.092 M⊙ yr−1 Mpc−3 at z ∼ 1.1, which agrees to within 40% of recent UV, IR and 3-GHz measurements of the cosmic star formation history.


2018 ◽  
Vol 14 (S346) ◽  
pp. 332-336
Author(s):  
M. Celeste Artale ◽  
Nicola Giacobbo ◽  
Michela Mapelli ◽  
Paolo Esposito

AbstractThe high mass X-ray binaries (HMXBs) provide an exciting framework to investigate the evolution of massive stars and the processes behind binary evolution. HMXBs have shown to be good tracers of recent star formation in galaxies and might be important feedback sources at early stages of the Universe. Furthermore, HMXBs are likely the progenitors of gravitational wave sources (BH–BH or BH–NS binaries that may merge producing gravitational waves). In this work, we investigate the nature and properties of HMXB population in star-forming galaxies. We combine the results from the population synthesis model MOBSE (Giacobbo & Mapelli 2018a) together with galaxy catalogs from EAGLE simulation (Schaye et al. 2015). Therefore, this method describes the HMXBs within their host galaxies in a self-consistent way. We compute the X-ray luminosity function (XLF) of HMXBs in star-forming galaxies, showing that this methodology matches the main features of the observed XLF.


2015 ◽  
Vol 454 (2) ◽  
pp. 1573-1584 ◽  
Author(s):  
Seong Jin Kim ◽  
Hyung Mok Lee ◽  
Woong-Seob Jeong ◽  
Tomotsugu Goto ◽  
Hideo Matsuhara ◽  
...  

2019 ◽  
Vol 630 ◽  
pp. A124
Author(s):  
Bruno Rodríguez Del Pino ◽  
Santiago Arribas ◽  
Javier Piqueras López ◽  
Alejandro Crespo Gómez ◽  
José M. Vílchez

We present and discuss the properties of an ionized gas component with extreme kinematics in a recently reported off-nuclear HII region located at ∼0.8−1.0 kpc from the nucleus of SDSS J143245.98+404300.3. The high-velocity-gas component is identified by the detection of very broad emission wings in the Hα line, with full width at half maximum (FWHM)  ≥ 850−1000 km s−1. Such gas kinematics are outstandingly high compared to other HII regions in local galaxies and are similar to those reported in some star-forming clumps of galaxies at z ∼ 2. The spatially resolved analysis indicates that the high-velocity gas extends at least ∼90 pc and it could be compatible with an ionized outflow entraining gas at a rate between approximately seven and nine times faster than the rate at which gas is being converted into stars. We do not detect broad emission wings in other emission lines such as Hβ, perhaps due to moderate dust extinction, nor in [N II]λλ6548, 6584 or [S II]λλ6717, 6731, which could be due to the presence of turbulent mixing layers originated by the impact of fast-flowing winds. The lack of spectral signatures associated to the presence of Wolf–Rayet stars points towards stellar winds from a large number of massive stars and/or supernovae as the likely mechanisms driving the high-velocity gas.


2004 ◽  
Vol 194 ◽  
pp. 3-6
Author(s):  
Andrea H. Prestwich

AbstractChandra and XMM-Newton are revolutionizing our understanding of compact binaries in external galaxies, allowing us to study sources in detail in Local Group Galaxies and study populations in more distant systems. In M31 the X-ray luminosity function depends on the local stellar population in the sense that areas with active star formation have more high luminosity sources, and a higher overall source density (Kong. Di Stefano. Garcia, & Greiner 2003). This result is also true in galaxies outside the Local Group; starburst galaxies have flatter X-ray luminosity functions than do spiral galaxies which are in turn flatter than elliptical galaxies. These observational results suggest that the high end of the luminosity function in star forming regions is dominated by short-lived high mass X-ray binaries.In Chandra Cycle 2 we started a Large Project to survey a sample of 11 nearby (< 10Mpc) face-on spiral galaxies. We find that sources can be approximately classified on the basis of their X-ray color into low mass X-ray binaries, high mass X-ray binaries and supersoft sources. There is an especially interesting class of source that has X-ray colors softer (“redder”) than a typical low mass X-ray binary source, but not so extreme as supersoft sources. Most of these are probably X-ray bright supernova remnants, but some may be a new type of black hole accretor. Finally, when we construct a luminosity function of sources selecting only sources with low mass X-ray binary colors (removing soft sources) we find that there is a dip or break probably associated with the Eddington luminosity for a neutron star.


2017 ◽  
Vol 599 ◽  
pp. A62 ◽  
Author(s):  
C. López-Sanjuan ◽  
E. Tempel ◽  
N. Benítez ◽  
A. Molino ◽  
K. Viironen ◽  
...  

2011 ◽  
Vol 7 (S284) ◽  
pp. 228-230
Author(s):  
Y. Toba ◽  
S. Oyabu ◽  
H. Matsuhara ◽  
D. Ishihara ◽  
M. Malkan ◽  
...  

AbstractWe present the first determination of the 18 μm luminosity function (LF) of galaxies at 0.006 < z < 0.7 (the average redshift is ~ 0.04) using the AKARI mid-infrared All-Sky Survey catalogue. We have selected a 18 μm flux-limited sample of 243 galaxies from the catalogue in the SDSS spectroscopic region. We then classified the sample into four types; Seyfert 1 galaxies (including QSOs), Seyfert 2 galaxies, LINERs and Star-Forming galaxies using mainly [OIII]/Hβ vs. [NII]/Hα line ratios obtained from the SDSS.As a result of constructing Seyfert 1 and Seyfert 2 LFs, we found the following results; (i) the number density ratio of Seyfert 2s to Seyfert 1s is 3.98 ± 0.41 obtained from Sy1 and Sy2 LFs; this value is larger than the results obtained from optical LFs. (ii) the fraction of Sy2s in the entire AGNs may be anti-correlated with 18 μm luminosity. These results suggest that the torus structure probably depends on the mid-infrared luminosity of AGNs and most of the AGNs in the local Universe are obscured by dust.


Sign in / Sign up

Export Citation Format

Share Document