scholarly journals Stellar and substellar companions from Gaia EDR3. Proper motion anomaly and resolved common proper-motion pairs

Author(s):  
P. Kervella ◽  
F. Arenou ◽  
F. Thévenin
2019 ◽  
Vol 626 ◽  
pp. A99 ◽  
Author(s):  
Markus Janson ◽  
Ruben Asensio-Torres ◽  
Damien André ◽  
Mickaël Bonnefoy ◽  
Philippe Delorme ◽  
...  

Wide low-mass substellar companions are known to be very rare among low-mass stars, but appear to become increasingly common with increasing stellar mass. However, B-type stars, which are the most massive stars within ~150 pc of the Sun, have not yet been examined to the same extent as AFGKM-type stars in that regard. In order to address this issue, we launched the ongoing B-star Exoplanet Abundance Study (BEAST) to examine the frequency and properties of planets, brown dwarfs, and disks around B-type stars in the Scorpius-Centaurus (Sco-Cen) association; we also analyzed archival data of B-type stars in Sco-Cen. During this process, we identified a candidate substellar companion to the B9-type spectroscopic binary HIP 79098 AB, which we refer to as HIP 79098 (AB)b. The candidate had been previously reported in the literature, but was classified as a background contaminant on the basis of its peculiar colors. Here we demonstrate that the colors of HIP 79098 (AB)b are consistent with several recently discovered young and low-mass brown dwarfs, including other companions to stars in Sco-Cen. Furthermore, we show unambiguous common proper motion over a 15-yr baseline, robustly identifying HIP 79098 (AB)b as a bona fide substellar circumbinary companion at a 345 ± 6 AU projected separation to the B9-type stellar pair. With a model-dependent mass of 16–25 MJup yielding a mass ratio of <1%, HIP 79098 (AB)b joins a growing number of substellar companions with planet-like mass ratios around massive stars. Our observations underline the importance of common proper motion analysis in the identification of physical companionship, and imply that additional companions could potentially remain hidden in the archives of purely photometric surveys.


2020 ◽  
Vol 494 (3) ◽  
pp. 3481-3490
Author(s):  
M Bonavita ◽  
C Fontanive ◽  
S Desidera ◽  
V D’Orazi ◽  
A Zurlo ◽  
...  

ABSTRACT We present the discovery of a white dwarf companion at ∼3.6 arcsec from GJ 3346, a nearby (π ∼ 42 mas) K star observed with SPHERE@VLT as part of an open time survey for faint companions to objects with significant proper motion discrepancies (Δμ) between Gaia DR1 and Tycho-2. Syrius-like systems like GJ 3346 AB, which include a main-sequence star and a white dwarf, can be difficult to detect because of the intrinsic faintness of the latter. They have, however, been found to be common contaminants for direct imaging (DI) searches. White dwarfs have in fact similar brightness to substellar companions in the infrared, while being much brighter in the visible bands like those used by Gaia. Combining our observations with Gaia DR2 and with several additional archival data sets, we were able to fully constrain the physical properties of GJ 3346 B, such as its effective temperature (11 × 103 ± 500 K) as well as the cooling age of the system (648 ± 58 Myr). This allowed us to better understand the system history and to partially explain the discrepancies previously noted in the age indicators for this object. Although further investigation is still needed, it seems that GJ 3346, which was previously classified as young, is in fact most likely to be older than 4 Gyr. Finally, given that the mass (0.58 ± 0.01 M⊙) and separation (85 au) of GJ 3346 B are compatible with the observed Δμ, this discovery represents a further confirmation of the potential of this kind of dynamical signatures as selection methods for DI surveys targeting faint, substellar companions.


2019 ◽  
Vol 623 ◽  
pp. A72 ◽  
Author(s):  
Pierre Kervella ◽  
Frédéric Arenou ◽  
François Mignard ◽  
Frédéric Thévenin

Context. The census of stellar and substellar companions of nearby stars is largely incomplete, in particular toward the low-mass brown dwarf and long-period exoplanets. It is, however, fundamentally important in the understanding of the stellar and planetary formation and evolution mechanisms. Nearby stars are particularly favorable targets for high precision astrometry. Aims. We aim to characterize the presence of physical companions of stellar and substellar mass in orbit around nearby stars. Methods. Orbiting secondary bodies influence the proper motion of their parent star through their gravitational reflex motion. Using the HIPPARCOS and Gaia’s second data release (GDR2) catalogs, we determined the long-term proper motion of the stars common to these two catalogs. We then searched for a proper motion anomaly (PMa) between the long-term proper motion vector and the GDR2 (or HIPPARCOS) measurements, indicative of the presence of a perturbing secondary object. We focussed our analysis on the 6741 nearby stars located within 50 pc, and we also present a catalog of the PMa for ≳99% of the HIPPARCOS catalog (≈117 000 stars). Results. 30% of the stars studied present a PMa greater than 3σ. The PMa allows us to detect orbiting companions, or set stringent limits on their presence. We present a few illustrations of the PMa analysis to interesting targets. We set upper limits of 0.1−0.3 MJ to potential planets orbiting Proxima between 1 and 10 au (Porb = 3 to 100 years). We confirm that Proxima is gravitationally bound to α Cen. We recover the masses of the known companions of ϵ Eri, ϵ Ind, Ross 614 and β Pic. We also detect the signature of a possible planet of a few Jovian masses orbiting τ Ceti. Conclusions. Based on only 22 months of data, the GDR2 has limitations. But its combination with the HIPPARCOS catalog results in very high accuracy PMa vectors, that already enable us to set valuable constraints on the binarity of nearby objects. The detection of tangential velocity anomalies at a median accuracy of σ(ΔvT) = 1.0 m s−1 per parsec of distance is already possible with the GDR2. This type of analysis opens the possibility to identify long period orbital companions otherwise inaccessible. For long orbital periods, Gaia’s complementarity to radial velocity and transit techniques (that are more sensitive to short orbital periods) already appears to be remarkably powerful.


2000 ◽  
Vol 179 ◽  
pp. 205-208
Author(s):  
Pavel Ambrož ◽  
Alfred Schroll

AbstractPrecise measurements of heliographic position of solar filaments were used for determination of the proper motion of solar filaments on the time-scale of days. The filaments have a tendency to make a shaking or waving of the external structure and to make a general movement of whole filament body, coinciding with the transport of the magnetic flux in the photosphere. The velocity scatter of individual measured points is about one order higher than the accuracy of measurements.


1978 ◽  
Vol 48 ◽  
pp. 527-533
Author(s):  
Chr. de Vegt

The present accuracy limit for the majority of fainter stars on the northern hemisphere is set by the AGK2/3-catalogue, recently completely finished, but it should be noted that its epoch is much earlier (1960). Furtheron the AGK3-catalogue is a direct repetition of the AGK2, the plates have been taken with the same astrograph in a broad blue spectral bandpass and measured visually with the same equipment, therefore virtually an instrumental standard of 1930 is realized again. Figure 1 shows the mean errors of the AGK2/3 catalogue positions as a function of magnitude. The best accuracy for the AGK2/3 data is obtained for the stars of about ninth magnitude: 017 (AGK2) and 020 (AGK3) but decreases for the faint stars with mpg11 to 019 (AGK2) and Pg 027 (AGK3). Here the AGK3 data are even less accurate. With increasing distance to the catalogue epochs, the accuracy of positions decreases due to the proper motion errors. In the upper part of figure 2 the dependence of the AGK2/3 catalogue accuracy on time is shown for the faint stars separately and an averaged value.


1978 ◽  
Vol 48 ◽  
pp. 387-388
Author(s):  
A. R. Klemola
Keyword(s):  

Second-epoch photographs have now been obtained for nearly 850 of the 1246 fields of the proper motion program with centers at declination -20° and northwards. For the sky at 0° and northward only 130 fields remain to be taken in the next year or two. The 270 southern fields with centers at -5° to -20° remain for the future.


1998 ◽  
Vol 11 (1) ◽  
pp. 313-316
Author(s):  
F. Mignard ◽  
M. Froeschile

Abstract The Hipparcos optical reference frame is compared to the basic FK5 in order to determine the orientation at T0 = 1991.25 and the global spin between the two frames. The components of the spin are significant and suggest a correction the IAU76 value of the precession constant and to a possible non-precessional motion of the equinox of the FK5. The regional errors are analysed with harmonic functions and found to be as large as 150 mas in position and 3 mas/yr in proper motion.


1998 ◽  
Vol 11 (1) ◽  
pp. 536-538
Author(s):  
J. Kovalevsky

Abstract The astrometric results of Hipparcos include the positions at epoch (1991.25), the proper motion in the new IAU extragalactic reference system (ICRS), and parallaxes for about 118 000 stars. One dimensional positions are also given for 48 asteroids and 3 satellites. Due to the non-isotropy of the scanning law, the uncertainties are position dependent. Some indications of the remaining correlations are given. Various tests and comparisons show that systematic errors in parallax, if any, are not larger than 0.1 millisecond of arc.


2001 ◽  
Vol 205 ◽  
pp. 404-407
Author(s):  
R.M. Campbell

I briefly review the means by which VLBI observations can determine the position, proper motion, and parallax of a pulsar, consider a subset of the applications of such results, and highlight recent developments in pulsar gating at JIVE.


1995 ◽  
Vol 166 ◽  
pp. 357-357
Author(s):  
I. Platais ◽  
T. M. Girard ◽  
V. Kozhurina-Platais ◽  
R. A. Mendez ◽  
W. F. Van Altena ◽  
...  

We present the status of the Yale/San Juan Southern Proper Motion program (SPM) which is the southern hemisphere extension of the Lick Observatory Northern Proper Motion program with respect to faint galaxies (Platais et al., 1993). To date, measurements and reductions in the South Galactic Pole region comprising ≈ 1000 square-degrees on the sky have been finished. At this stage of the SPM program particular attention has been paid to the plate model choice along with an assessment of and accounting for systematic errors. For our establishing of a secondary reference frame we have noticed the presence of a potentially dangerous effect, so–called field–independent coma which is caused by lens decentering. We acknowledge the superb Hipparcos preliminary positions without which such analysis would be virtually impossible. The SPM data at the SGP region have also been used to constrain a multi–component Galaxy model. First results of this analysis are presented.


Sign in / Sign up

Export Citation Format

Share Document