scholarly journals Asteroids as radial velocity and resolving power standards for medium and high resolution spectroscopy

2006 ◽  
Vol 462 (2) ◽  
pp. 795-799 ◽  
Author(s):  
T. Zwitter ◽  
F. Mignard ◽  
F. Crifo
1987 ◽  
Vol 115 ◽  
pp. 340-341
Author(s):  
J. R. Walsh

HH39 is the group of Herbig-Haro (HH) objects associated with the young semi-stellar object R Monocerotis (R Mon) and the variable reflection nebula NGC 2261. An R CCD frame and a B prime focus plate of the region show a filament connecting NGC 2261 with HH39, confirming the association between R Mon and the HH objects. This filament is probably composed of emission material. The southern knot in HH39 has brightened over the last 20 years; its proper motion has been determined and is similar to that of the other knots. A total of 8 knots can be distinguished in HH39 surrounded by diffuse nebulosity. High resolution spectroscopy of the Hα and [N II] emission lines shows the spatial variation of the radial velocity structure over the largest knots (HH39 A and C). Distinct differences in excitation and velocity structure between the knots are apparent. The observations are compatible with the knots being high velocity ejecta from R Mon, decelerated by interaction with ambient material and with bow shocks on their front surfaces.


1995 ◽  
Vol 155 ◽  
pp. 337-338 ◽  
Author(s):  
L. Mantegazza ◽  
E. Poretti

Extensive photometric monitoring of bright δ Scuti stars, made in the last years, allowed us to get reliable frequency determinations also in very complicated cases. Table 1 gives a full description of our photometric targets. Recently, we realized that combining photometry with simultaneous high resolution spectroscopy, in order to study line profile variations, offers the possibility to perform a much more reliable mode identification. Hence, the photometric runs of FG Vir, X Cae, HD 2724 were paired with spectroscopic ones obtained at the Coudé Auxiliary Telescope (ESO, La Silla, Chile). The stellar spectra are centred at 4508 Å and they cover a range of 37.6 Å; the resolving power is about 50000-60000 and the linear dispersion is 2.4 Å/mm.


2020 ◽  
Vol 494 (1) ◽  
pp. 108-119 ◽  
Author(s):  
Rebecca K Webb ◽  
Matteo Brogi ◽  
Siddharth Gandhi ◽  
Michael R Line ◽  
Jayne L Birkby ◽  
...  

ABSTRACT High-resolution spectroscopy ($R\, \geqslant \, 20\, 000$) is currently the only known method to constrain the orbital solution and atmospheric properties of non-transiting hot Jupiters. It does so by resolving the spectral features of the planet into a forest of spectral lines and directly observing its Doppler shift while orbiting the host star. In this study, we analyse VLT/CRIRES ($R=100\, 000$) L-band observations of the non-transiting giant planet HD 179949 b centred around 3.5 ${\mu {m}}$. We observe a weak (3.0σ, or S/N = 4.8) spectral signature of H2O in absorption contained within the radial velocity of the planet at superior-conjunction, with a mild dependence on the choice of line list used for the modelling. Combining this data with previous observations in the K band, we measure a detection significance of 8.4 σ for an atmosphere that is most consistent with a shallow lapse-rate, solar C/O ratio, and with CO and H2O being the only major sources of opacity in this wavelength range. As the two sets of data were taken 3 yr apart, this points to the absence of strong radial-velocity anomalies due, e.g. to variability in atmospheric circulation. We measure a projected orbital velocity for the planet of KP = (145.2 ± 2.0) km s−1 (1σ) and improve the error bars on this parameter by ∼70 per cent. However, we only marginally tighten constraints on orbital inclination ($66.2^{+3.7}_{-3.1}$ deg) and planet mass ($0.963^{+0.036}_{-0.031}$ Jupiter masses), due to the dominant uncertainties of stellar mass and semimajor axis. Follow ups of radial-velocity planets are thus crucial to fully enable their accurate characterization via high-resolution spectroscopy.


1992 ◽  
Vol 10 (4) ◽  
pp. 841-847 ◽  
Author(s):  
O. Renner ◽  
M. Kopecký

Vertical dispersion variant of the double-crystal spectrograph is analyzed and its basic quantitative characteristics (luminosity, resolving power) are computed using ray tracing code. It is shown that geometric apparatus smearing is minimized due to high dispersion and spectral resolution may considerably exceed the single-crystal diffraction limit. Performing high-resolution spectral work, the efficiency of the double-crystal apparatus exceeds that of the flat single-crystal spectrograph. The usefulness of this method in laser plasma spectroscopy is demonstrated analyzing the detection of phosphorus He-like resonance line and its satellites.


2020 ◽  
Vol 643 ◽  
pp. A32
Author(s):  
M. Gangi ◽  
B. Nisini ◽  
S. Antoniucci ◽  
T. Giannini ◽  
K. Biazzo ◽  
...  

Context. Disk winds play a fundamental role in the evolution of protoplanetary systems. The complex structure and dynamics can be investigated through the emission of atomic and molecular lines detected in high-resolution optical/IR spectra of young stellar objects. Despite their great importance, however, studies connecting the atomic and molecular components are lacking so far. Aims. In the framework of the GIARPS High-resolution Observations of T Tauri stars (GHOsT) project, we aim to characterize the atomic and molecular winds in a sample of classical T Tauri stars (CTTs) of the Taurus-Auriga region, focusing on a statistical analysis of the kinematic properties of the [O I] 630 nm and H2 2.12 μm lines and their mutual relationship. Methods. We analyzed the flux calibrated [O I] 630 nm and H2 2.12 μm lines in a sample of 36 CTTs observed at the Telescopio Nazionale Galileo with the HARPS-N spectrograph (resolving power of R = 115 000) and with the GIANO spectrograph (R = 50 000). We decomposed the line profiles into different kinematic Gaussian components and focused on the most frequently detected component, the narrow low-velocity (vp < 20 km s−1) component (NLVC). Results. We found that the H2 line is detected in 17 sources (~50% detection rate), and [O I] is detected in all sources but one. The NLV components of the H2 and [O I] emission are kinematically linked, with a strong correlation between the peak velocities and the full widths at half maximum of the two lines. Assuming that the line width is dominated by Keplerian broadening, we found that the [O I] NVLC originates from a disk region between 0.05 and 20 au and that of H2 in a region from 2 and 20 au. We also found that H2 is never detected in sources where [O I] originates in regions below 1 au, as well as in sources of early (~F-G) spectral type with a luminosity >1 L⊙. Moreover, in seven sources, both H2 and [O I] have clear blueshifted peaks and prominent [O I] high-velocity components. These components have also been detected in sources with no relevant centroid shift. Finally, we did not find any clear correlation between vp of the H2 and [O I] NVLC and the outer disk inclination. This result is in line with previous studies. Conclusions. Our results suggest that molecular and neutral atomic emission in disk winds originate from regions that might overlap, and that the survival of molecular winds in disks strongly depends on the gas exposure to the radiation from the central star. The presence of jets does not necessarily affect the kinematics of the low-velocity winds. Our results demonstrate the potential of wide-band high-resolution spectroscopy in linking tracers of different manifestations of the same phenomenon.


2008 ◽  
Vol 4 (S253) ◽  
pp. 129-139 ◽  
Author(s):  
François Bouchy ◽  
Claire Moutou ◽  
Didier Queloz ◽  

AbstractRadial Velocity follow-up is essential to establish or exclude the planetary nature of a transiting companion as well as to accurately determine its mass. Here we present some elements of an efficient Doppler follow-up strategy, based on high-resolution spectroscopy, devoted to the characterization of transiting candidates. Some aspects and results of the radial velocity follow-up of the CoRoT space mission are presented in order to illustrate the strategy used to deal with the zoo of transiting candidates.


2004 ◽  
Vol 202 ◽  
pp. 69-71
Author(s):  
Douglas A. Caldwell ◽  
W. J. Borucki ◽  
J. M. Jenkins ◽  
D. G. Koch ◽  
L. Webster ◽  
...  

The NASA Ames Research Center's Vulcan photometer is being used in a search for close–in giant extrasolar planets. With our current data reduction system we achieve 0.2–0.8% hour–to–hour relative photometric precision on ∽ 6000 stars brighter than 13th magnitude. Three Galactic-plane fields have so far yielded hundreds of variable stars, including ∽ 50 eclipsing or interacting binaries per field. Several candidate detections have been followed up with radial velocity observations. High-resolution spectroscopy revealed many of the strongest candidates to be grazing eclipsing binaries.


2010 ◽  
Vol 6 (S272) ◽  
pp. 400-401
Author(s):  
Valentina G. Klochkova ◽  
Eugene L. Chentsov ◽  
Anatoly S. Miroshnichenko

AbstractWe present the results of high-resolution spectroscopy of the extremely luminous star Cyg OB2 No. 12. We identified about 200 spectral features in the range 4552–7939 Å, including the interstellar Na I, K I lines and numerous very strong DIBs, along with the He I, C II, and Si II lines. An MK spectral type we derived for the object is B4.5±0.5 Ia+. Our analysis of the radial velocity data shows the presence of a gradient in the stellar atmosphere, caused by both atmospheric expansion and matter infall onto the star. The Hα emission displays broad Thompson wings, a slightly blue-shifted P Cyg type absorption component and a time-variable core absorption. We conclude that the wind is variable in time.


2005 ◽  
Vol 13 ◽  
pp. 793-795
Author(s):  
H. Warren Moos

AbstractThe Far Ultraviolet Spectroscopic Explorer (FUSE) instrument covers the spectral range 912-1187 Å with a resolving power of 15,000 to 20,000. This spectral region provides unique access for the study of many atomic and ionic species found in the interstellar medium, intergalactic medium, stars, and extragalactic objects. This paper summarizes the status of the mission and then discusses the need for higher resolution spectroscopy. Although the FUSE instrumental resolution is sufficient to separate most species, it usually it is not adequate for analyzing the gas velocity structure in detail. Implications for future missions are discussed.


2011 ◽  
Vol 7 (S283) ◽  
pp. 526-527
Author(s):  
Laimons Začs ◽  
Julius Sperauskas ◽  
Aija Laure ◽  
Olesja Smirnova

AbstractThe results of high-resolution spectroscopy and radial velocity monitoringa are presented for selected post-AGB candidate stars. Time series of high-resolution spectra for HD235858 shows spliting of low-excitation atomic lines and significant changes in the intensity of C2 and CN lines originated in the extended atmosphere significantly affected by pulsations and outflow. Mass ejection was confirmed for cool R CrB candidate stars DY Per, V1983 Cyg, and V2074 Cyg.


Sign in / Sign up

Export Citation Format

Share Document