scholarly journals Genetic structuring in farmed and wild Gilthead seabream and European seabass in the Mediterranean Sea: implementations for detection of escapees

2020 ◽  
Vol 33 ◽  
pp. 7
Author(s):  
Eirini-Slavka Polovina ◽  
Evelina Kourkouni ◽  
Costas S. Tsigenopoulos ◽  
Pablo Sanchez-Jerez ◽  
Emmanuel D. Ladoukakis

Microsatellite markers were used to investigate the genetic structure of the two most important cultured fish in the Mediterranean Sea, the gilthead seabream (Sparus aurata) and the European seabass (Dicentrarchus labrax), from two (one wild and one farmed) populations in Western Mediterranean (Spain) and from two (one wild and one farmed) populations Eastern Mediterranean (Greece). All populations were in Hardy-Weinberg disequilibrium. Interestingly, wild and farmed populations for both species from Greece were genetically differentiated and could be distinguished from each other. We used Bayesian methods for cluster analysis of farmed and wild populations. Our analysis has implications for the identification of escapees from fish farms to the wild.

Pathogens ◽  
2021 ◽  
Vol 10 (9) ◽  
pp. 1205
Author(s):  
Maria Chiara Cascarano ◽  
Orestis Stavrakidis-Zachou ◽  
Ivona Mladineo ◽  
Kim D. Thompson ◽  
Nikos Papandroulakis ◽  
...  

Climate change is expected to have a drastic effect on aquaculture worldwide. As we move forward with the agenda to increase and diversify aquaculture production, rising temperatures will have a progressively relevant impact on fish farming, linked to a multitude of issues associated with fish welfare. Temperature affects the physiology of both fish and pathogens, and has the potential to lead to significant increases in disease outbreaks within aquaculture systems, resulting in severe financial impacts. Significant shifts in future temperature regimes are projected for the Mediterranean Sea. We therefore aim to review and discuss the existing knowledge relating to disease outbreaks in the context of climate change in Mediterranean finfish aquaculture. The objective is to describe the effects of temperature on the physiology of both fish and pathogens, and moreover to list and discuss the principal diseases of the three main fish species farmed in the Mediterranean, namely gilthead seabream (Sparus aurata), European seabass (Dicentrarchus labrax), and meagre (Argyrosomus regius). We will attempt to link the pathology of each disease to a specific temperature range, while discussing potential future disease threats associated with the available climate change trends for the Mediterranean Sea.


2019 ◽  
Author(s):  
Piero Lionello ◽  
Dario Conte ◽  
Marco Reale

Abstract. Large positive and negative sea level anomalies at the coast of the Mediterranean Sea are linked to intensity and position of cyclones moving along the Mediterranean storm track, with dynamics involving different factors. This analysis is based on a model hindcast and considers nine coastal stations, which are representative of sea level anomalies with different magnitude and characteristics. When a shallow water fetch is present, the wind around the cyclone center is the main cause of sea level positive and negative anomalies, depending on its onshore or offshore direction. The inverse barometer effect produces a positive anomaly at the coast near the cyclone pressure minimum and a negative anomaly at the opposite side of the Mediterranean Sea, because a cross-basin mean sea level pressure gradient is associated to the presence of a cyclone. Further, at some stations, negative sea level anomalies are reinforced by a residual water mass redistribution within the basin, which is associated with a transient response to the atmospheric pressure forcing. Though the link between presence of a cyclone in the Mediterranean has comparable importance for positive and negative anomalies, the relation between cyclone position and intensity is stronger for the magnitude of positive events. Area of cyclogenesis, track of the central minimum and position at the time of the event differ depending on the location where the sea level anomaly occurs and on its sign. The western Mediterranean is the main cyclogenesis area for both positive and negative anomalies, overall. Atlantic cyclones mainly produce positive sea level anomalies in the western basin. At the easternmost stations, positive anomalies are caused by Cyclogenesis in the Eastern Mediterranean. North Africa cyclogeneses are a major source of positive anomalies at the central African coast and negative anomalies at the eastern Mediterranean and North Aegean coast.


Chemosphere ◽  
2013 ◽  
Vol 93 (2) ◽  
pp. 338-343 ◽  
Author(s):  
Viviana Paiano ◽  
Caterina Generoso ◽  
Alberta Mandich ◽  
Ilaria Traversi ◽  
Marinella Palmiotto ◽  
...  

2008 ◽  
Vol 17 ◽  
pp. 87-91 ◽  
Author(s):  
A. V. Mehta ◽  
S. Yang

Abstract. Climatological features of mesoscale rain activities over the Mediterranean region between 5° W–40° E and 28° N–48° N are examined using the Tropical Rainfall Measuring Mission (TRMM) 3B42 and 2A25 rain products. The 3B42 rainrates at 3-hourly, 0.25°×0.25° spatial resolution for the last 10 years (January 1998 to July 2007) are used to form and analyze the 5-day mean and monthly mean climatology of rainfall. Results show considerable regional and seasonal differences of rainfall over the Mediterranean Region. The maximum rainfall (3–5 mm day−1) occurs over the mountain regions of Europe, while the minimum rainfall is observed over North Africa (~0.5 mm day−1). The main rainy season over the Mediterranean Sea extends from October to March, with maximum rainfall occurring during November–December. Over the Mediterranean Sea, an average rainrate of ~1–2 mm day−1 is observed, but during the rainy season there is 20% larger rainfall over the western Mediterranean Sea than that over the eastern Mediterranean Sea. During the rainy season, mesoscale rain systems generally propagate from west to east and from north to south over the Mediterranean region, likely to be associated with Mediterranean cyclonic disturbances resulting from interactions among large-scale circulation, orography, and land-sea temperature contrast.


2011 ◽  
Vol 70 (2) ◽  
pp. 209-214 ◽  
Author(s):  
Fernando Gómez

Diversity and Distribution of the DinoflagellatesBrachidinium, AsterodiniumandMicroceratium(Brachidiniales, Dinophyceae) in the open Mediterranean SeaBrachidiniacean dinoflagellates have been investigated in the open waters of the Mediterranean Sea, along a transect from the south of France to the south of Cyprus (20 June-18 July 2008).BrachidiniumandKarenia papilionaceaoften co-occurred,B. capitatumpredominating in the surface waters. The highest abundance ofBrachidiniumwere found in the upper 25min the western Mediterranean with amaximum (24 cells L-1) at a depth of 5 m in the Balearic Sea.Asterodinium(up to 4 cells L-1) was recorded below of deep chlorophyll maxima. The genusMicroceratium, only known from the tropical Indo-Pacific region, is reported for the first time in the Mediterranean Sea.Microceratiumwas found below 100min the eastern Mediterranean Sea, with the highest abundance of 8 cells L-1at 125 m depth, in the Levantine Basin. This study also illustrates for the first time specimens under the division ofBrachidiniumandMicroceratium. This first occurrence ofMicroceratiumin the Mediterranean Sea should be considered an indicator of climate warming. However, it should not be considered a non-indigenous taxon.Microceratiumis the ‘tropical morphotype’, the adaptation of a local species (a life stage ofKarenia - Brachidinium - Asterodinium) to the tropical environmental conditions that prevail in summer in the open Mediterranean Sea.


2011 ◽  
Vol 8 (3) ◽  
pp. 827-840 ◽  
Author(s):  
M. Le Moal ◽  
H. Collin ◽  
I. C. Biegala

Abstract. The Mediterranean Sea is one of the most oligotrophic marine areas on earth where nitrogen fixation has formally believed to play an important role in carbon and nitrogen fluxes. Although this view is under debate, the diazotrophs responsible for this activity have still not been investigated in the open sea. In this study, we characterised the surface distribution and species richness of unicellular and filamentous diazotrophs across the Mediterranean Sea by combining microscopic counts with size fractionated in situ hybridization (TSA-FISH), and 16S rDNA and nifH genes phylogenies. These genetic analyses were possible owing to the development of a new PCR protocol adapted to scarce microorganisms that can detect as few as 1 cell ml−1 in cultures. Low concentrations of diazotrophic cyanobacteria were detected and this community was dominated at 99.9% by picoplankton hybridized to the Nitro821 probe, specific for unicellular diazotrophic cyanobacteria (UCYN). Among filamentous cyanobacteria only 0.02 filament ml−1 of Richelia were detected in the eastern basin, while small (0.7–1.5 μm) and large (2.5–3.2 μm) Nitro821-targeted cells were recovered at all stations with a mean concentration of 3.5 cell ml−1. The affiliation of the small Nitro821-targeted cells to UCYN-A was confirmed by 16S and nifH phylogenies in the western Mediterranean Sea. In the central and the eastern Mediterranean Sea no 16S rDNA and nifH sequence from UCYN was obtained as cells concentration were close to, or below PCR detection limit. Bradyrhizobium sequences dominated nifH clone libraries from picoplanktonic size fractions. A few sequences of γ-proteobacteria were also detected in the central Mediterranean Sea. While low phosphate and iron concentrations could explain the absence of Trichodesmium sp., the factors that prevent the development of UCYN-B and C remain unknown. We also propose that the dominating picoplankters probably developed specific strategies, such as associations with protists or particles, and/or photosynthetic activity, to acquire carbon for sustaining diazotrophy.


Sign in / Sign up

Export Citation Format

Share Document