scholarly journals Bioclimatic modeling of moss distribution: MaxEnt interpretation for test species

2020 ◽  
Vol 24 ◽  
pp. 00066
Author(s):  
Olga Pisarenko ◽  
Natali Makunina

Bioclimatic modeling method MaxEnt is tested to micro-habitats occupying objects on the example of five moss species. Modeling is done out on a planetary and regional scale. Results are discussed.

Author(s):  
O. Yu. Pisarenko

Bioclimatic modeling method MaxEnt is tested on objects occupying micro-habitats on the example ofmosses. Data organizing options and the results are discussed.


2010 ◽  
Vol 10 (2) ◽  
pp. 4271-4304 ◽  
Author(s):  
I. Xueref-Remy ◽  
P. Bousquet ◽  
C. Carouge ◽  
L. Rivier ◽  
N. Viovy ◽  
...  

Abstract. Our ability to predict future climate change relies on our understanding of current and future CO2 fluxes, particularly at the scale of regions (100–1000 km). Nowadays, CO2 regional sources and sinks are still poorly known. Inverse transport modeling, a method often used to quantify these fluxes, relies on atmospheric CO2 measurements. One of the main challenge for the transport models used in the inversions is to reproduce properly CO2 vertical gradients between the boundary layer and the free troposphere, as these gradients impact on the partitioning ot the calculated fluxes between the different model regions. Vertical CO2 profiles are very well suited to assess the performances of the models. In this paper, we conduct a comparison between observed and modeled CO2 profiles recorded during two CAATER campaigns that occurred in May 2001 and October 2002 over western Europe, and that we have described in a companion paper. We test different combinations between a global transport model (LMDZt), a mesoscale transport model (CHIMERE), and different sets of biospheric fluxes, those latter all chosen to have a diurnal cycle (CASA, SiB2 and ORCHIDEE). The vertical profile comparison shows that: (1) in most cases the influence of the biospheric flux is small but sometimes not negligeable, ORCHIDEE giving the best results in the present study; (2) LMDZt is most of the time too diffusive, as it simulates a too high boundary layer height; (3) CHIMERE reproduces better the observed gradients between the boundary layer and the free troposphere, but is sometimes too variable and gives rise to incoherent structures. We conclude there is a need for more vertical profiles to conduct further studies that will help to improve the parameterization of vertical transport in the models used for CO2 flux inversions. Furthermore, we use a modeling method to quantify CO2 fluxes at the regional scale from any observing point, coupling influence functions from the transport model LMDZt (that works quite well at the synoptic scale) with information on the space-time distribution of fluxes. This modeling method is compared to a dual tracer method (the so-called Radon method) for a case study on 25 May 2001 during which simultaneous well-correlated in-situ CO2 and Radon 222 measurements have been collected. Both methods give a similar flux within the Radon 222 method uncertainty (35%), that is an atmospheric CO2 sink of −4.2 to −4.4 gC m−2 day−1. We have estimated the uncertainty of the modeling method to be at least 33% when considering averages, even much more on individual events. This method allows the determination of the area that contributed to the CO2 observed concentration. In our case, the observation point located at 1700 m a.s.l. in the North of France, is influenced by an area of 1500×700 km2 that covers the Benelux region, part of Germany and western Poland. Furthermore, this method allows deconvolution between the different contributing fluxes. In this case study, the biospheric sink contributes for 73% of the total flux, fossil fuel emissions for 27%, the oceanic flux being negligeable. However, the uncertainties of the influence function method must be better assessed. This could be possible by applying it to other cases where the calculated fluxes can be checked independantly, for example at tall towers where simultaneous CO2 and Radon 222 measurements can be conducted. The use of optimized fluxes (from atmospheric inversions) and of mesoscale models for atmospheric transport may also significantly reduce the uncertainties.


2011 ◽  
Vol 11 (12) ◽  
pp. 5673-5684 ◽  
Author(s):  
I. Xueref-Remy ◽  
P. Bousquet ◽  
C. Carouge ◽  
L. Rivier ◽  
P. Ciais

Abstract. Our ability to predict future climate change relies on our understanding of current and future CO2 fluxes, particularly on a regional scale (100–1000 km). CO2 regional sources and sinks are still poorly understood. Inverse transport modeling, a method often used to quantify these fluxes, relies on atmospheric CO2 measurements. One of the main challenges for the transport models used in the inversions is to properly reproduce CO2 vertical gradients between the boundary layer and the free troposphere, as these gradients impact on the partitioning of the calculated fluxes between the different model regions. Vertical CO2 profiles are very well suited to assess the performances of the models. In this paper, we conduct a comparison between observed and modeled CO2 profiles recorded during two CAATER campaigns that occurred in May 2001 and October 2002 over Western Europe, as described in a companion paper. We test different combinations between a global transport model (LMDZt), a mesoscale transport model (CHIMERE), and different sets of biospheric fluxes, all chosen with a diurnal cycle (CASA, SiB2 and ORCHIDEE). The vertical profile comparison shows that: 1) in most cases the influence of the biospheric flux is small but sometimes not negligible, ORCHIDEE giving the best results in the present study; 2) LMDZt is most of the time too diffuse, as it simulates a too high boundary layer height; 3) CHIMERE better reproduces the observed gradients between the boundary layer and the free troposphere, but is sometimes too variable and gives rise to incoherent structures. We conclude there is a need for more vertical profiles to conduct further studies to improve the parameterization of vertical transport in the models used for CO2 flux inversions. Furthermore, we use a modeling method to quantify CO2 fluxes at the regional scale from a chosen observing point, coupling influence functions from the transport model LMDZt (that works quite well at the synoptic scale) with information on the space-time distribution of fluxes. This modeling method is compared to a dual tracer method (the so-called Radon method) for a case study on 25 May 2001 during which simultaneous well-correlated in situ CO2 and Radon 222 measurements have been collected. Both methods give a similar result: a flux within the Radon 222 method uncertainty (35%), that is an atmospheric CO2 sink of −4.2 to −4.4 gC m−2 day−1. We have estimated the uncertainty of the modeling method to be at least 33% on average, and even more for specific individual events. This method allows the determination of the area that contributed to the CO2 observed concentration. In our case, the observation point located at 1700 m a.s.l. in the north of France, is influenced by an area of 1500×700 km2 that covers the Benelux region, part of Germany and western Poland. Furthermore, this method allows deconvolution between the different contributing fluxes. In this case study, the biospheric sink contributes 73% of the total flux, fossil fuel emissions for 27%, the oceanic flux being negligible. However, the uncertainties of the influence function method need to be better assessed. This could be possible by applying it to other cases where the calculated fluxes can be checked independently, for example at tall towers where simultaneous CO2 and Radon 222 measurements can be conducted. The use of optimized fluxes (from atmospheric inversions) and of mesoscale models for atmospheric transport may also significantly reduce the uncertainties.


2018 ◽  
Vol 939 (9) ◽  
pp. 10-19
Author(s):  
Е.А. Rasputina ◽  
N.A. Popov ◽  
V.V. Chepinoga

Bioclimatic modeling enables not only mapping the areas of certain plant or animals species on the basis of environmental characteristics, but also investigating the influence of environmental factors on the occurrence of these species. We simulated the possible habitats of three species of higher vascular plants on the northern macroslope of the Khamar-Daban ridge


2019 ◽  
pp. 161-200
Author(s):  
Mikwi Cho

This paper is concerned with Korean farmers who were transformed into laborers during the Korean colonial period and migrated to Japan to enhance their living conditions. The author’s research adopts a regional scale to its investigation in which the emergence of Osaka as a global city attracted Koreans seeking economic betterment. The paper shows that, despite an initial claim to permit the free mobility of Koreans, the Japanese empire came to control this mobility depending on political, social, and economic circumstances of Japan and Korea. For Koreans, notwithstanding poverty being a primary trigger for the abandonment of their homes, the paper argues that their migration was facilitated by chain migration and they saw Japan as a resolution to their economic hardships in the process of capital accumulation by the empire.


2015 ◽  
Vol 62 (3) ◽  
pp. 189-198 ◽  
Author(s):  
AL Primo ◽  
DG Kimmel ◽  
SC Marques ◽  
F Martinho ◽  
UM Azeiteiro ◽  
...  

2014 ◽  
Vol 1 (3) ◽  
pp. 3-7
Author(s):  
O. Zhukorskyy ◽  
O. Hulay

Aim. To estimate the impact of in vivo secretions of water plantain (Alisma plantago-aquatica) on the popula- tions of pathogenic bacteria Erysipelothrix rhusiopathiae. Methods. The plants were isolated from their natural conditions, the roots were washed from the substrate residues and cultivated in laboratory conditions for 10 days to heal the damage. Then the water was changed; seven days later the selected samples were sterilized using fi lters with 0.2 μm pore diameter. The dilution of water plantain root diffusates in the experimental samples was 1:10–1:10,000. The initial density of E. rhusiopathiae bacteria populations was the same for both experimental and control samples. The estimation of the results was conducted 48 hours later. Results. When the dilution of root diffusates was 1:10, the density of erysipelothrixes in the experimental samples was 11.26 times higher than that of the control, on average, the dilution of 1:100 − 6.16 times higher, 1:1000 – 3.22 times higher, 1:10,000 – 1.81 times higher, respectively. Conclusions. The plants of A. plantago-aquatica species are capable of affecting the populations of E. rhusiopathiae pathogenic bacteria via the secretion of biologically active substances into the environment. The consequences of this interaction are positive for the abovementioned bacteria, which is demon- strated by the increase in the density of their populations in the experiment compared to the control. The intensity of the stimulating effect on the populations of E. rhusiopathiae in the root diffusates of A. plantago-aquatica is re- ciprocally dependent on the degree of their dilution. The investigated impact of water plantain on erysipelothrixes should be related to the topical type of biocenotic connections, the formation of which between the test species in the ecosystems might promote maintaining the potential of natural focus of rabies. Keywords: Alisma plantago-aquatica, in vivo secretions, Erysipelothrix rhusiopathiae, population density, topical type of connections.


2011 ◽  
Vol 131 (3) ◽  
pp. 635-643 ◽  
Author(s):  
Kohjiro Hashimoto ◽  
Kae Doki ◽  
Shinji Doki ◽  
Shigeru Okuma ◽  
Akihiro Torii

Sign in / Sign up

Export Citation Format

Share Document