scholarly journals Efficiency of measures and technology to preserve soil fertility and protect the soil from erosion in the steppe regions of the Southern Urals

2021 ◽  
Vol 36 ◽  
pp. 03019
Author(s):  
V.Yu. Skorokhodov ◽  
A.A. Zorov ◽  
D.V. Mitrofanov ◽  
Yu.V. Kaftan ◽  
N.A. Zenkova

The main source of soil fertility decline in the arid conditions of the Orenburg region is erosion, which manifests itself to varying degrees over the entire arable land. In the Orenburg region, 2214.9 ha are subject to water erosion, wind erosion - 279.4 ha, and out of a total area of 6240.0 thousand hectares, deflationary hazardous erosion - 5304.3 thousand hectares. In connection with erosion processes, the humus content in the soil decreases by 1-6 tons in southern chernozems, ordinary -1.7%. The studies were carried out in two stationary areas of the Orenburg Cis-Urals and Trans-Urals in order to determine the efficiency of measures and technologies to preserve soil fertility and protect the soil from erosion in arid conditions. With the transition to contour-landscape agriculture (CLA), the fertility of slope lands and the yield of field crops increases, and the negative effect of drought decreases to a minimum. The decrease in soil fertility caused by the erosion process is recorded in the fallow field when it is allocated for spring wheat. Soil-protecting and green fallows largely eliminate this disadvantage. During the fallowing period as per the data, the field of black fallow accumulates 430 kg per 1 ha of nitrates in the 0-150 cm layer, and when mineral fertilizers are applied at a dose of N40P80, it increases to 689 kg per 1 ha.

Author(s):  
V. А. Shchedrin

In OOO “Dubovitskoe” which was organized in 2006 as investment project of the AO “Shchelkovo Agrokhim” for 2010 – 2012 three advanced crop rotations have been developed. Before their introduction the grain crops fraction in the cropping system was 62%, then it fell to 49%. At the same time the portion of raw crops increased from 15 to 20%, legumes from 6 to 8%, others (buckwheat, grain maize, etc.) - up to 23%. As of 2017, the crops of leguminous crops have increased noteworthily. There are two predominant soil types here heavy clay loam podzolized chernozem (6615 ha) and grey forest soil (856 ha). Weighted average indicators (as of 2017): humus content in the soils of arable land is 5, 34%; acidity pH is 4.92; labile phosphorus - 111.8 mg / kg soil; exchange potassium - 144 mg / kg soil. The coefficient of the soil fertility in the enterprise (weighted average) is 0.66. This means that maintaining and increasing the soil fertility for arable land of the enterprise is critical task. As a result of the research, it has been established that the technologies introduced in the crop vegetation management (CVS) in the crop rotation conditions ensure high productivity of cultivated crops and stability of humus content in soils as an energy basis and a guarantor of increasing fertility. The indicators of the labile phosphorus Р205 and exchange potassium К20 in the soils depending on the crop rotation vary from a certain decrease to expressed steady growth. Therefore it is necessary to specify seeding rates based on actual data. Sustainable soil acidification in the crop rotations under crop cultivation in OOO “Dubovitskoe” it is the result of the acid feterlizers high rates application, during studying period did not carried out required agromelioration with calcium contenting elements.


2021 ◽  
Vol 2 (44) ◽  
pp. 3-3
Author(s):  
Alexander Saakian ◽  
◽  

The article presents the results of a bioindication study of atmospheric air pollution on the condition of pine needles (Pinus sylvestris L.) on the example of the city of Orsk, Orenburg region. The city of Orsk is a major industrial center of the Southern Urals. The research was carried out on 6 sites located within the city with different anthropogenic loads. The research method is based on the direct dependence of damage to Pinus sylvestris L. needles (necrosis and desiccation) on the level of atmospheric air pollution. Analyzed the morphological characteristics of the needles of Pinus sylvestris L. in the studied areas. The result of the study is an assessment of the state of atmospheric air. Keywords: BIOINDICATION, SCOTS PINE, NEEDLES, AIR POLLUTION, ORSK CITY, ORENBURG REGION


2021 ◽  
Vol 36 ◽  
pp. 03003
Author(s):  
Yakhiya Kaipov ◽  
Rifkat Akchurin ◽  
Rustam Kirayev ◽  
Asiya Nizaeva

Field experiments were conducted in the arid steppe zone of the Southern Urals, in the Republic of Bashkortostan of the Russian Federation. The soil is common chernozem. The precipitation during the growing season (May-September) is 166 mm. The experimental crop rotation consisted of 7 fields: 4 with perennial herbs (a mixture of Bromus inermis and Medicago varia), 3 with annual crops. The study analysed soil properties and carrying capacity in perennial grass rotation, conventional and reduced tillage. During the crop-pasture rotation, the humus content in the soil changes insignificantly depending on the tillage, being within 7.6-8.0 %. Perennial grasses loosened the soil, positively affecting moisture accumulation under crop rotation by the beginning of the pre-sowing period. The arable layer of common chernozem in the reduced tillage had a density of 1.05 g/cm3, less than 0.06 g/cm3 in conventional cultivation. Fertilizer application increased yields at 0.49-0.51 t/ha of feed units. Reduced tillage resulted in higher feed units by 0.06-0.08 tons per 1 ha. Crop-pasture rotation implementation and development ensures bioclimatically-determined yields of fodder crops and maintains soil fertility at an optimal level.


2019 ◽  
Vol 52 (1) ◽  
pp. 113
Author(s):  
Oleg Goryanin ◽  
Anatoly Chichkin ◽  
Baurzhan Dzhangabaev ◽  
Elena Shcherbinina

<p>The influence of long-term use of mineral and organic fertilizers, crop rotations, plant residues, soil treatment systems on humus content of common chernozems and stabilization of productivity of field crops in the arid conditions of the Middle Volga region is considered on the example of researches in the Samara area. The zone climate of field experiments is characterized as extremely continental. The sum of the active temperatures (above 10°C) is 2,800-3,000°C. The average annual rainfall is 454.1 mm with fluctuations over the years from 187.5 mm to 704.6 mm. At some years, precipitation does not happen within a month or more. Hydrothermal index in May-August is 0,7, the duration of the frost-free period is 149 days. If the humus content in the region is 4.35-4.52%, then, it is necessary to introduce 6.7-8.0 t/ha of manure per year to maintain the balance of the deficit. The introduction of biological methods for the conservation and reproduction of soil fertility (green fertilizers, perennial grasses, straw as fertilizer) reduces the loss of humus by 0.15-0.24 t/ha. This makes it possible to increase the payback of mineral fertilizers, which must be taken into account when developing fertility reproduction systems for soils. In the variants with minimal and differentiated cultivation of the soil during crop rotation in 30 years of the study, the loss of humus in the 0-30 cm layer decreased by 0.04 - 0.73% (43-789 kg per year with maximum values in the combination of direct seeding of spring crops with deep loosening for a number of crop rotations is 4.14%, significantly exceeding the control (by 0.54%). The decrease in soil fertility in the variants with constant plowing and minimal tillage contributed to an increase in the conjugation of productivity of crops with humus. Based on the research, in order to preserve the fertility of the soil of ordinary chernozem, it is necessary to use green fertilizer, leguminous perennial grasses. In the regional rotations of crop production, new generation technologies are recommended, the basis of which is differentiated tillage with the use of crushed straw as fertilizer.</p>


2020 ◽  
Vol 17 (3) ◽  
pp. 87-92
Author(s):  
Irek Araslanbaev ◽  
Firdavis Avsakhov ◽  
Alisa Ableeva ◽  
Razit Nurlygajanov ◽  
Milyausha Lukyanova ◽  
...  

2019 ◽  
Author(s):  
V B Zaalishvili ◽  
S Kh Dzanagov ◽  
S A Bekuzarova ◽  
M Sh Gaplaev ◽  
E A Tsagaraeva ◽  
...  

The most important problem in the highland area is the development of technologies to reduce water erosion and improve soil fertility preservation. In order to restore degraded soils of slope lands, a number of measure is undertaken, among them planting crops across the slope and rational fertilizer treatment. To reduce erosion processes, mineral fertilizers were applied depending on the steepness of slope. High sections with the steepness of 9–10∘ received ammonium sulphate in a quantity of 60 kg/ha. Lower part of the slope with the steepness of 5–7∘ received ammonia nitrate as a nitrogen fertilizer in a quantity of 80 kg/ha, while the gentle sloping part with 2–5∘ had urea-formaldehyde fertilizer incorporated under winter tillage in a quantity of 50 kg/ha. At that, stripes were formed across the slope where tall-growing perennial herbs were planted: hill mustard (Bunias orentalis L.), silphium (Silphium perfaliatum), Eastern galega (Galeqa orientalis L.), cock’s foot grass (Dakfilis qlamerata L.). The research results have shown that thanks to fertilizers, yield of crops increases by a factor of 1.5–2, while soil losses reduced from 0.042 to 0.018 t/ha.


2021 ◽  
pp. 146-153
Author(s):  
S. Razanov ◽  
V. Melnyk ◽  
B. Nazaruk ◽  
M. Kutsenko

The article presents the results of the agroecological composition of soils for different agricultural uses. Under modern conditions of increasing intensification of agricultural production, the agroecological condition of soils is deteriorating, which increases the risk of obtaining low–quality products. Along with this, there are various problems, such as loss of soil fertility, increased erosion, groundwater pollution and environmental pollution in general. Therefore, there is a need for constant monitoring of agroecological indicators of the soil in the conditions of intensive agriculture and horticulture. The great importance is the problem of finding reserves to increase soil fertility and improve their agroecological condition. Therefore, regular testing of soil nutrients and factors that have a major impact on their availability are extremely important to achieve sustainable levels of crop and fruit production. The main purpose of the research was to study and analyze agricultural lands: arable land and perennial plantations and the main agrochemical indicators of the soil of the central part of Vinnytsia region during intensive agriculture and horticulture. The object of research is the soils of agricultural lands used under intensive horticulture and crop production. The subject of research is the agroecological indicators of soil. The research was carried out in the farm of Agro–Etalon LLC in the village of Vasylivka, Tyvriv district. The soils of agricultural lands used under orchards (apple orchard) and agricultural crops (wheat after sunflower predecessor) were studied for comparison. According to the results of soil analysis, it was found that the highest difference in the studied indicators was found in the exchangeable potassium (К2О), mobile phosphorus (Р2О5), which was observed more in the soils involved in horticulture compared to the soils of field crop rotations. Farm soils with different agricultural uses were characterized by lower humus content. The highest difference in the concentration of chemical metals was found for molybdenum (Mo) and cadmium (Cd), which were more in the soils used in horticulture.


Agronomy ◽  
2019 ◽  
Vol 9 (9) ◽  
pp. 485 ◽  
Author(s):  
Jakub Elbl ◽  
Jana Maková ◽  
Soňa Javoreková ◽  
Juraj Medo ◽  
Antonín Kintl ◽  
...  

The presented paper deals with the analysis of potential differences between organic waste compost (CBD), vermicompost (CVER) and mineral fertilizer (MF; 27% of N) applications affecting the quality of arable soil by influencing microbial activity therein. The selected types of compost represent alternatives to conventional organic fertilizers, which are, however, not available to Czech and Slovak farmers in sufficient amounts. Their mutual comparison and the comparison with organic fertilizers aim to provide farmers further information about their influence on arable land and thus to give them the possibility of deciding on the most suitable amendments. To demonstrate the effect of these amendments, six variants were prepared: one without the addition of fertilizers; two variants with the addition of 40 Mg/ha of CVER and CBD; one variant with the addition of double dosed CVER (80 Mg/ha), and the remaining two variants were fertilized only with MF (0.22 Mg/ha) and with the combination of CVER (0.20 Mg/ha) and MF (0.11 Mg/ha). Substrate induced respiration (SIR), basal respiration (BS), microbial carbon (Cmic) and enzymatic activities (hydrolysis of fluorescein diacetate—FDA, dehydrogenase activity—DHA, and phosphatase activity—PA) were used to evaluate the effect of CBD, CVER and MF application on the soil quality. Both organic and mineral amendments affected BS and SIR. The highest BS and SIR rates were found in variants with compost application (CVER and CBD). All variants treated with the mineral fertilizer showed the lowest level of enzyme activities; lower by about 30% in comparison with variants where CVER, CBD and the combination of MF and CVER were applied. We found insignificant differences between the individual types of compost. More importantly, we compared the situation at the beginning of the experiment and after its end. It was found that the application of mineral fertilizers automatically led to the deterioration of all enzymatic parameters, on average by more than 25%, as compared with the situation at the beginning of the experiment. However, when the mineral fertilizer dose was supplemented with organic amendments (CVER), this negative effect was eliminated or significantly reduced. Furthermore, both composts (CVER and CBD) positively affected plant biomass production, which reached a level of production enhanced by the MF. Results clearly showed that the application of both compost types could be used to improve soil quality in agriculture.


Author(s):  
P. H. Kopytko ◽  
◽  
R. V. Yakovenko

The issue of scientifically sound fertilizer application in fruit plantations, which are long-term and re-grown in one place remains insufficiently studied. To solve this problem is possible only in long-term stationary studies, as the impact of different fertilizer systems on changes in soil properties and tree productivity for a long period of their use. The results of researches of long-term fertilizer influence on the main fertility indices of dark gray podzolic heavy loam soil and productivity of repeatedly grown apple trees of Idared varieties on seed and vegetative (M4) rootstocks and Calville snow on seedling rootstock are considered. During the 85-year period of growing the first and second generation of apple trees in the experimental garden, the organic fertilizer (40 t/ha of cattle manure), mineral fertilizer (N120P120K120) and their combination (20 t/ha of manure + N60P60K60) were applied in the old plantation every two years in autumn in plowing in rows at 18–20 cm, and in the new repetition: manure, phosphorus and potassium fertilizers as well, and nitrogen fertilizer in half doses annually in spring for cultivation or disk plowing to a depth of 12–15 cm. As a result of research it was found that organic fertilizer better than mineral fertilizers provided the formation of soil fertility (humus and mobile compounds and forms of nutrients, soil reaction) and yield capacity of experimental apple trees, which for all years of fruiting exceeded the total yield of Calville snow and Idared on seedling and vegetative rootstocks, respectively, by 34.8, 27.7 and 23.4 % compared with the yield of the control non-fertilized areas and 16.0, 15.8 and 13.2 % – on those fertilized with N120Р120К120. Similar parameters of soil fertility indicators are formed by the organo-mineral fertilizer system with systematic long-term application of half the norms of organic and mineral fertilizers of manure 20 t/ha together with N60P60K60. However, the mineral system (N120P120K120) significantly less increases the humus content and content of macronutrients available for plant nutrition and does not enrich the soil with trace elements, acidifies the reaction of the soil environment


Sign in / Sign up

Export Citation Format

Share Document