scholarly journals The stones of the Sanctuary of Delphi – Northern shore of the Corinth Gulf – Greece

2020 ◽  
Vol 191 ◽  
pp. 11
Author(s):  
Marilou de Vals ◽  
Renaldo Gastineau ◽  
Amélie Perrier ◽  
Romain Rubi ◽  
Isabelle Moretti

The choice of stones by the ancient Greeks to build edifices remains an open question. If the use of local materials seems generalized, allochthonous stones are usually also present but lead to obvious extra costs. The current work aims to have an exhaustive view of the origins of the stones used in the Sanctuary of Delphi. Located on the Parnassus zone, on the hanging wall of a large normal fault related to the Corinth Rift, this Apollo Sanctuary is mainly built of limestones, breccia, marbles, as well as more recent poorly consolidated sediments generally called pôros in the literature. To overpass this global view, the different lithologies employed in the archaeological site have been identified, as well as the local quarries, in order to find their origins. The different limestones are autochthons and come from the Upper Jurassic – Cretaceous carbonate platform of the Tethys Ocean involved in the Hellenides orogen. Those limestones of the Parnassus Massif constitute the majority of the rock volume in the site; a specific facies of Maastrichtian limestone called “Profitis Ilias limestone” has been used for the more prestigious edifices such as the Apollo Temple. The corresponding ancient quarry is located few kilometers west of the sanctuary. Then, slope breccia has been largely used in the sanctuary: it crops out in and around the site and is laying on top of the carbonates. Finally, the pôros appear to be very variable and seven different facies have been documented, including travertine, oolitic grainstone, marine carbonates and coarse-grained sandstones. All these recent facies exist in the south-east shore of the Gulf of Corinth, although – except for the grainstone – the quarries are not yet known.

Geosites ◽  
2019 ◽  
Vol 1 ◽  
pp. 1-6
Author(s):  
Robert Biek

The Sevier fault is spectacularly displayed on the north side of Utah Highway 12 at the entrance to Red Canyon, where it offsets a 500,000-year-old basaltic lava flow. The fault is one of several active, major faults that break apart the western margin of the Colorado Plateau in southwestern Utah. The Sevier fault is a “normal” fault, a type of fault that forms during extension of the earth’s crust, where one side of the fault moves down relative to the other side. In this case, the down-dropped side (the hanging wall) is west of the fault; the upthrown side (the footwall) lies to the east. The contrasting colors of rocks across the fault make the fault stand out in vivid detail. Immediately south of Red Canyon, the 5-million-year-old Rock Canyon lava flow, which erupted on the eastern slope of the Markagunt Plateau, flowed eastward and crossed the fault (which at the time juxtaposed non-resistant fan alluvium against coarse-grained volcaniclastic deposits) (Biek and others, 2015). The flow is now offset 775 to 1130 feet (235-345 m) along the main strand of the fault, yielding an anomalously low vertical slip rate of about 0.05 mm/yr (Lund and others, 2008). However, this eastern branch of the Sevier fault accounts for only part of the total displacement on the fault zone. A concealed, down-to-the-west fault is present west of coarse-grained volcaniclastic strata at the base of the Claron cliffs. Seismic reflection data indicate that the total displacement on the fault zone in this area is about 3000 feet (900 m) (Lundin, 1987, 1989; Davis, 1999).


Geosphere ◽  
2019 ◽  
Vol 15 (5) ◽  
pp. 1577-1597
Author(s):  
Andrew S. Canada ◽  
Elizabeth J. Cassel ◽  
Allen J. McGrew ◽  
M. Elliot Smith ◽  
Daniel F. Stockli ◽  
...  

Abstract Within extended orogens, records that reflect the driving processes and dynamics of early extension are often overprinted by subsequent orogenic collapse. The Copper Mountains of northeastern Nevada preserve an exceptional record of hinterland extensional deformation and high-elevation basin formation, but current geochronology and thermochronology are insufficient to relate this to broader structural trends in the region. This extension occurred concurrent with volcanism commonly attributed to Farallon slab removal. We combine thermochronology of both synextensional hanging-wall strata and footwall rocks to comprehensively evaluate the precise timing and style of this deformation. Specifically, we apply (U-Th)/(He-Pb) double dating of minerals extracted from Eocene–Oligocene Copper Basin strata with multi-mineral (U-Th)/He and 40Ar/39Ar thermochronology of rocks sampled across an ∼20 km transect of the Copper Mountains. We integrate basement and detrital thermochronology records to comprehensively evaluate the timing and rates of hinterland extension and basin sedimentation. Cooling and U-Pb crystallization ages show the Coffeepot Stock, which spans the width of the Copper Mountains, was emplaced at ca. 109–108 Ma, and then cooled through the 40Ar/39Ar muscovite and biotite closure temperatures by ca. 90 Ma, the zircon (U-Th)/He closure temperature between ca. 90 and 70 Ma, and the apatite (U-Th)/He closure temperature between 43 and 40 Ma. Detrital apatite and zircon (U-Th)/(He-Pb) double dating of late Eocene fluvial and lacustrine strata of the Dead Horse Formation and early Oligocene fluvial strata of the Meadow Fork Formation, both deposited in Copper Basin, shows that Early Cretaceous age detrital grains have a cooling history that is analogous to proximal intrusive rocks of the Coffeepot Stock. At ca. 38 Ma, cooling and depositional ages for Copper Basin strata reveal rapid exhumation of proximal source terranes (cooling rate of ∼37 °C/m.y.); in these terranes, 8–12 km of slip along the low-angle Copper Creek normal fault exhumed the Coffeepot Stock in the footwall. Late Eocene–early Oligocene slip along this fault and an upper fault splay, the Meadow Fork fault, created a half graben that accommodated ∼1.4 km of volcaniclastic strata, including ∼20 m of lacustrine strata that preserve the renowned Copper Basin flora. Single-crystal sanidine 40Ar/39Ar geochronology of interbedded tuffs in Copper Basin constrains the onset of rapid exhumation to 38.0 ± 0.9 Ma, indicating that surface-breaching extensional deformation was coincident with intense proximal volcanism. Coarse-grained syndeformational sediments of the Oligocene Meadow Fork Formation were deposited just prior to formation of an extensive regional Oligocene–Miocene unconformity and represent one of the most complete hinterland stratigraphic records of this time. We interpret this history of rapid late Eocene exhumation across the Copper Mountains, coeval volcanism, and subsequent unconformity formation to reflect dynamic and thermal effects associated with Farallon slab removal. The final phase of extension is recorded by late, high-angle normal faults that cut and rotate the early middle Miocene Jarbidge Rhyolite sequence, deposited unconformably in the hanging wall. These results provide an independent record of episodic Paleogene to Miocene exhumation documented in Cordilleran metamorphic core complexes and establish that substantial extension occurred locally in the hinterland prior to province-wide Miocene extensional break-up.


2019 ◽  
pp. 36-61
Author(s):  
S. V. Rud’ko ◽  
N. B. Kuznetsov ◽  
E. A. Belousova ◽  
T. V. Romanyuk

The U–Pb dating and Hf isotope systematics of detrital zircons from a sandstone interbed in the section of the upper conglomerate sequence of the Mt. South Demerdzhi were carried out. The dominant populations of detrital zircons in the studied sample characterize episodes of magmatic activity within the source of the Upper Jurassic conglomerates. Magmatism was manifested in the Vendian-Cambrian, Carbon-Triassic and Late Jurassic. The åHf values of detrital zircons of these ages indicate the insignificant role of the ancient (Archean–Early Proterozoic) continental crust in the protolith of magmatic chambers. The similarity of the detrital zircons age distribution from the Middle Jurassic and Upper Jurassic conglomerate strata suggests that they are molasses of the Cimmerian orogen. The absence of products of Middle Jurassic magmatism in molasses of the Cimmerian orogen, which we fixed, limits position of the Cimmerian orogen in the southern part of the Scythian plate. It is shown that the primary source of the Precambrian detrital zircons were mobilized within the Cimmerian orogen the crustal fragments of the Peri-Gondwanan origin, rather than the basement complexes of the East European Platform, similar to the complexes of the Ukrainian shield. The reconstruction of the main stages of the accumulation of the coarse-grained strata of the Mountaineous Crimea in the context of the tectonic evolution of the southern margin of Laurasia during the Mesozoic is presented.


Author(s):  
Reinhard Wolff ◽  
Ralf Hetzel ◽  
István Dunkl ◽  
Aneta A. Anczkiewicz

AbstractThe Brenner normal fault bounds the Tauern Window to the west and accommodated a significant portion of the orogen-parallel extension in the Eastern Alps. Here, we use zircon (U–Th)/He, apatite fission track, and apatite (U–Th)/He dating, thermokinematic modeling, and a topographic analysis to constrain the exhumation history of the western Tauern Window in the footwall of the Brenner fault. ZHe ages from an E–W profile (parallel to the slip direction of the fault) decrease westwards from ~ 11 to ~ 8 Ma and suggest a fault-slip rate of 3.9 ± 0.9 km/Myr, whereas AFT and AHe ages show no spatial trends. ZHe and AFT ages from an elevation profile indicate apparent exhumation rates of 1.1 ± 0.7 and 1.0 ± 1.3 km/Myr, respectively, whereas the AHe ages are again spatially invariant. Most of the thermochronological ages are well predicted by a thermokinematic model with a normal fault that slips at a rate of 4.2 km/Myr between ~ 19 and ~ 9 Ma and produces 35 ± 10 km of extension. The modeling reveals that the spatially invariant AHe ages are caused by heat advection due to faulting and posttectonic thermal relaxation. The enigmatic increase of K–Ar phengite and biotite ages towards the Brenner fault is caused by heat conduction from the hot footwall to the cooler hanging wall. Topographic profiles across an N–S valley in the fault footwall indicate 1000 ± 300 m of erosion after faulting ceased, which agrees with the results of our thermokinematic model. Valley incision explains why the Brenner fault is located on the western valley shoulder and not at the valley bottom. We conclude that the ability of thermokinematic models to quantify heat transfer by rock advection and conduction is crucial for interpreting cooling ages from extensional fault systems.


2021 ◽  
Author(s):  
Tihomir Marjanac ◽  
Marina Čalogović ◽  
Karlo Bermanec ◽  
Ljerka Marjanac

Abstract Strong earthquake of M6.4 stroke Petrinja and neighbouring cities of Sisak and Glina in Croatia on December 29th 2020. It was preceded by two foreshocks of M5.2 and M5.0, and followed by a series of aftershocks of various magnitudes and intensities. We have analysed first 500 earthquakes and aftershocks of > M1.0 which occurred from December 28th 2020 to January 19th 2021, their frequency, focal depths, and coseismic surface phenomena. Correlation of focal depths revealed the source of earthquakes was faulting of hanging wall of a listric normal fault with NW-SE strike and dip towards NE. Major fault seems to have caused earthquakes with only minor magnitudes. The strongest two earthquakes of M6.4 and M5.2 were initiated on synthetic fault, whereas M5.0 earthquake was initiated on an antithetic fault. Almost 50% of all seismic energy of the first 500 analysed seismic events over M1.0 was released on 1 km and 10 km deep hypocentres. Focal mechanisms of major earthquakes and strong fore- and aftershocks indicate dextral-slip mechanism, which is also in accordance with the orientation of surface cracks, land faulting and sand volcano trains. Co-seismic surface phenomena are land cracks and fissures, land faults, sand volcanoes, eruptive springing of ground water, activation of landslides, and formation of dozens of collapse sinkholes which continued to form and grow for about a month following the major earthquake.


2021 ◽  
Author(s):  
Fang Ru-Ya ◽  
Lin Cheng-Han ◽  
Lin Ming-Lang

<p>Recent earthquake events have shown that besides the strong ground motions, the coseismic faulting often caused substantial ground deformation and destructions of near-fault structures. In Taiwan, many high-rise buildings with raft foundation are close to the active fault due to the dense population. The Shanchiao Fault, which is a famous active fault, is the potentially dangerous normal fault to the capital of Taiwan (Taipei). This study aims to use coupled FDM-DEM approach for parametrically analyzing the soil-raft foundation interaction subjected to normal faulting. The coupled FDM-DEM approach includes two numerical frameworks: the DEM-based model to capture the deformation behavior of overburden soil, and the FDM-based model to investigate the responses of raft foundation. The analytical approach was first verified by three  benchmark cases and theoretical solutions. After the verification, a series of small-scale sandbox model was used to validate the performance of the coupled FDM-DEM model in simulating deformation behaviors of overburden soil and structure elements. The full-scale numerical models were then built to understand the effects of relative location between the fault tip and foundation in the normal fault-soil-raft foundation behavior. Preliminary results show that the raft foundation located above the fault tip suffered to greater displacement, rotation, and inclination due to the intense deformation of the triangular shear zone in the overburden soil. The raft foundation also exhibited distortion during faulting. Based on the results, we suggest different adaptive strategies for the raft foundation located on foot wall and hanging wall if the buildings are necessary to be constructed within the active fault zone. It is the first time that the coupled FDM-DEM approach has been carefully validated and applied to study the normal fault-soil-raft foundation problems. The novel numerical framework is expected to contribute to design aids in future practical engineering.</p><p><strong>Keywords</strong>: Coupled FDM-DEM approach; normal faulting; ground deformation; soil-foundation interaction; raft foundation.</p>


2006 ◽  
Vol 143 (5) ◽  
pp. 609-620 ◽  
Author(s):  
M. BRÖCKER ◽  
L. FRANZ

This paper reports new geochronological data from the island of Andros, one of the less-studied islands of the Cycladic blueschist belt in the central Aegean Sea. On Andros, two tectonic units can be distinguished, the Makrotantalon unit and the Lower unit, which are separated by a low-angle normal fault, related to large-scale regional extension. Mineral assemblages indicate greenschist-facies P–T conditions for the last metamorphic overprint of both units. In contrast to the structurally lower unit, unambiguous indications for an earlier high-pressure stage were not recognized in rocks collected above the tectonic contact. Owing to a polyphase metamorphic evolution and incomplete resetting of the Rb–Sr isotope system during overprinting, phengite geochronology indicates a wide range in dates between c. 104 and 21 Ma for the Makrotantalon unit, as observed in rocks of similar structural position elsewhere in the Cyclades. The new Rb–Sr data support the interpretation, but are not conclusive evidence, that tectonic slices within the hanging wall were affected by two periods of Cretaceous metamorphism (c. 100–90 Ma and c. 80–70 Ma) and a Miocene event (c. 21 Ma). Tectonic juxtaposition was accomplished around c. 21 Ma. The Lower unit is correlative with the Cycladic high-pressure occurrences. Rb–Sr phengite dating yielded the same range in ages as determined elsewhere in the region for white mica of high-pressure rocks (c. 50–40 Ma) and their overprinted, greenschist-facies derivatives (c. 23–21 Ma). An age gradient towards the tectonic contact with the overlying Makrotantalon unit is not developed. The new results fit well into the previously established chronological framework for the larger study area. Indications for regional differences in the timing of the HP stage and/or the greenschist-facies overprint have not yet been found.


Sign in / Sign up

Export Citation Format

Share Document