scholarly journals Eocene exhumation and extensional basin formation in the Copper Mountains, Nevada, USA

Geosphere ◽  
2019 ◽  
Vol 15 (5) ◽  
pp. 1577-1597
Author(s):  
Andrew S. Canada ◽  
Elizabeth J. Cassel ◽  
Allen J. McGrew ◽  
M. Elliot Smith ◽  
Daniel F. Stockli ◽  
...  

Abstract Within extended orogens, records that reflect the driving processes and dynamics of early extension are often overprinted by subsequent orogenic collapse. The Copper Mountains of northeastern Nevada preserve an exceptional record of hinterland extensional deformation and high-elevation basin formation, but current geochronology and thermochronology are insufficient to relate this to broader structural trends in the region. This extension occurred concurrent with volcanism commonly attributed to Farallon slab removal. We combine thermochronology of both synextensional hanging-wall strata and footwall rocks to comprehensively evaluate the precise timing and style of this deformation. Specifically, we apply (U-Th)/(He-Pb) double dating of minerals extracted from Eocene–Oligocene Copper Basin strata with multi-mineral (U-Th)/He and 40Ar/39Ar thermochronology of rocks sampled across an ∼20 km transect of the Copper Mountains. We integrate basement and detrital thermochronology records to comprehensively evaluate the timing and rates of hinterland extension and basin sedimentation. Cooling and U-Pb crystallization ages show the Coffeepot Stock, which spans the width of the Copper Mountains, was emplaced at ca. 109–108 Ma, and then cooled through the 40Ar/39Ar muscovite and biotite closure temperatures by ca. 90 Ma, the zircon (U-Th)/He closure temperature between ca. 90 and 70 Ma, and the apatite (U-Th)/He closure temperature between 43 and 40 Ma. Detrital apatite and zircon (U-Th)/(He-Pb) double dating of late Eocene fluvial and lacustrine strata of the Dead Horse Formation and early Oligocene fluvial strata of the Meadow Fork Formation, both deposited in Copper Basin, shows that Early Cretaceous age detrital grains have a cooling history that is analogous to proximal intrusive rocks of the Coffeepot Stock. At ca. 38 Ma, cooling and depositional ages for Copper Basin strata reveal rapid exhumation of proximal source terranes (cooling rate of ∼37 °C/m.y.); in these terranes, 8–12 km of slip along the low-angle Copper Creek normal fault exhumed the Coffeepot Stock in the footwall. Late Eocene–early Oligocene slip along this fault and an upper fault splay, the Meadow Fork fault, created a half graben that accommodated ∼1.4 km of volcaniclastic strata, including ∼20 m of lacustrine strata that preserve the renowned Copper Basin flora. Single-crystal sanidine 40Ar/39Ar geochronology of interbedded tuffs in Copper Basin constrains the onset of rapid exhumation to 38.0 ± 0.9 Ma, indicating that surface-breaching extensional deformation was coincident with intense proximal volcanism. Coarse-grained syndeformational sediments of the Oligocene Meadow Fork Formation were deposited just prior to formation of an extensive regional Oligocene–Miocene unconformity and represent one of the most complete hinterland stratigraphic records of this time. We interpret this history of rapid late Eocene exhumation across the Copper Mountains, coeval volcanism, and subsequent unconformity formation to reflect dynamic and thermal effects associated with Farallon slab removal. The final phase of extension is recorded by late, high-angle normal faults that cut and rotate the early middle Miocene Jarbidge Rhyolite sequence, deposited unconformably in the hanging wall. These results provide an independent record of episodic Paleogene to Miocene exhumation documented in Cordilleran metamorphic core complexes and establish that substantial extension occurred locally in the hinterland prior to province-wide Miocene extensional break-up.

2020 ◽  
Vol 191 ◽  
pp. 11
Author(s):  
Marilou de Vals ◽  
Renaldo Gastineau ◽  
Amélie Perrier ◽  
Romain Rubi ◽  
Isabelle Moretti

The choice of stones by the ancient Greeks to build edifices remains an open question. If the use of local materials seems generalized, allochthonous stones are usually also present but lead to obvious extra costs. The current work aims to have an exhaustive view of the origins of the stones used in the Sanctuary of Delphi. Located on the Parnassus zone, on the hanging wall of a large normal fault related to the Corinth Rift, this Apollo Sanctuary is mainly built of limestones, breccia, marbles, as well as more recent poorly consolidated sediments generally called pôros in the literature. To overpass this global view, the different lithologies employed in the archaeological site have been identified, as well as the local quarries, in order to find their origins. The different limestones are autochthons and come from the Upper Jurassic – Cretaceous carbonate platform of the Tethys Ocean involved in the Hellenides orogen. Those limestones of the Parnassus Massif constitute the majority of the rock volume in the site; a specific facies of Maastrichtian limestone called “Profitis Ilias limestone” has been used for the more prestigious edifices such as the Apollo Temple. The corresponding ancient quarry is located few kilometers west of the sanctuary. Then, slope breccia has been largely used in the sanctuary: it crops out in and around the site and is laying on top of the carbonates. Finally, the pôros appear to be very variable and seven different facies have been documented, including travertine, oolitic grainstone, marine carbonates and coarse-grained sandstones. All these recent facies exist in the south-east shore of the Gulf of Corinth, although – except for the grainstone – the quarries are not yet known.


2004 ◽  
Vol 52 (3) ◽  
pp. 215-233 ◽  
Author(s):  
Glen S. Stockmal ◽  
Art Slingsby ◽  
John W.F. Waldron

Abstract Recent hydrocarbon exploration in western Newfoundland has resulted in six new wells in the Port au Port Peninsula area. Port au Port No.1, drilled in 1994/95, penetrated the Cambro-Ordovician platform and underlying Grenville basement in the hanging wall of the southeast-dipping Round Head Thrust, terminated in the platform succession in the footwall of this basement-involved inversion structure, and discovered the Garden Hill petroleum pool. The most recent well, Shoal Point K-39, was drilled in 1999 to test a model in which the Round Head Thrust loses reverse displacement to the northeast, eventually becoming a normal fault. This model hinged on an interpretation of a seismic reflection survey acquired in 1996 in Port au Port Bay. This survey is now in the public domain. In our interpretation of these data, the Round Head Thrust is associated with another basement-involved feature, the northwest-dipping Piccadilly Bay Fault, which is mapped on Port au Port Peninsula. Active as normal faults in the Taconian foreland, both these faults were later inverted during Acadian orogenesis. The present reverse offset on the Piccadilly Bay Fault was previously interpreted as normal offset on the southeast-dipping Round Head Thrust. Our new interpretation is consistent with mapping on Port au Port Peninsula and north of Stephenville, where all basement-involved faults are inverted and display reverse senses of motion. It also explains spatially restricted, enigmatic reflections adjacent to the faults as carbonate conglomerates of the Cape Cormorant Formation or Daniel’s Harbour Member, units associated with inverted thick-skinned faults. The K-39 well, which targeted the footwall of the Round Head Thrust, actually penetrated the hanging wall of the Piccadilly Bay Fault. This distinction is important because the reservoir model invoked for this play involved preferential karstification and subsequent dolomitization in the footwalls of inverted thick-skinned faults. The apparent magnitude of structural inversion across the Piccadilly Bay Fault suggests other possible structural plays to the northeast of K-39.


Geosites ◽  
2019 ◽  
Vol 1 ◽  
pp. 1-12
Author(s):  
Robert Biek

The Hurricane fault is the big earthquake fault in southwestern Utah. It stretches at least 155 miles (250 km) from south of the Grand Canyon northward to Cedar City and is capable of producing damaging earthquakes of about magnitude 7.0. The Hurricane fault is a “normal” fault, a type of fault that forms during extension of the earth’s crust, where one side of the fault moves down relative to the other side. In this case, the down-dropped side (the hanging wall) is west of the fault; the upthrown side (the footwall) lies to the east. Like most long normal faults, the Hurricane fault is composed of discrete segments that tend to rupture independently (figure 1). The fault lies at or near the base of the Hurricane Cliffs, which form an impressive, little-eroded fault scarp several hundred feet high. Conspicuous, west-tilted, faulted slivers of mostly Triassic and Jurassic red beds are locally exposed at the base of the cliffs, and contrast strongly with gray Permian carbonates exposed in the cliffs themselves. Several Pleistocene basaltic lava flows flowed across and are now offset by the fault zone, dramatically recording long-term slip rates. Should you make the mistake of pronouncing the name “Hurricane” as one would when describing a mighty storm on the East Coast, you should stand to be corrected, for locals pronounce it as “Hurricun” even though pioneers named the town after ferocious winds common to the local area.


Geosites ◽  
2019 ◽  
Vol 1 ◽  
pp. 1-6
Author(s):  
Robert Biek

The Sevier fault is spectacularly displayed on the north side of Utah Highway 12 at the entrance to Red Canyon, where it offsets a 500,000-year-old basaltic lava flow. The fault is one of several active, major faults that break apart the western margin of the Colorado Plateau in southwestern Utah. The Sevier fault is a “normal” fault, a type of fault that forms during extension of the earth’s crust, where one side of the fault moves down relative to the other side. In this case, the down-dropped side (the hanging wall) is west of the fault; the upthrown side (the footwall) lies to the east. The contrasting colors of rocks across the fault make the fault stand out in vivid detail. Immediately south of Red Canyon, the 5-million-year-old Rock Canyon lava flow, which erupted on the eastern slope of the Markagunt Plateau, flowed eastward and crossed the fault (which at the time juxtaposed non-resistant fan alluvium against coarse-grained volcaniclastic deposits) (Biek and others, 2015). The flow is now offset 775 to 1130 feet (235-345 m) along the main strand of the fault, yielding an anomalously low vertical slip rate of about 0.05 mm/yr (Lund and others, 2008). However, this eastern branch of the Sevier fault accounts for only part of the total displacement on the fault zone. A concealed, down-to-the-west fault is present west of coarse-grained volcaniclastic strata at the base of the Claron cliffs. Seismic reflection data indicate that the total displacement on the fault zone in this area is about 3000 feet (900 m) (Lundin, 1987, 1989; Davis, 1999).


Author(s):  
Luhut Pardamean Siringoringo ◽  
Dardji Noeradi

Northern part of Masalima Trench Basin is located in the southern part of the Strait of Makassar, which includes Masalima Trough and Massalima High. The area of research is an extension of the South Makassar Basin which extends from South Makassar Basin to the Northeast part of Java Sea. Subsurface data are used such as 2D seismic sections (21 lines) and data drilling wells (2 wells) to understand the tectonic structure in the basin formation and understand the stratigraphic order of basin. Based on well data can be known that Northern part Masalima Trench Basin is aborted rift because marked by post rift phase. Northern part Masalima Trench Basin was formed by normal faults which have trend northeast-southwest with  pre rift, early syn rift, late syn rift, and post rift sediment geometry. Early syn rift sediment was Middle Eocene, late syn rift sediment was Middle Eocene till Early Oligocene and post rift sediment was Early Oligocene till Early Miocene. The Depositional environment of early syn rift phase such as beach, shallow marine, and land. The Depositional environment of late syn rift phase such as beach till deep marine, and the depositional environment of post rift is deep marine.


2021 ◽  
Vol 72 (3) ◽  
Author(s):  
Serdar Akgündüz ◽  
Hayrettin Koral

The Thrace Basin consists of Paleogene–Neogene deposits that lie in the lowland south of the Strandja highlands in NW Turkey, where metagranitic and metasedimentary rocks occur. The Akalan Formation consisting of colluvial fan/debris flow deposits represents the base of the sequence in the northern Thrace basin where it is bounded by a right lateral strike-slip oblique fault called “The Western Strandja Fault Zone”. This formation exhibits a coarse-grained, angular and grain-supported character close to the fault zone which has releasing-bends. Fine-grained, rounded, and matrix-supported sediments occur away from the contact. During this study, the Akalan Formation is described for the first time as having larger benthic foraminifera (LBF) of Coskinolina sp of Ypresian–Lutetian, Nummulites obesus of early Lutetian, Dictyoconus egyptiensis of Lutetian, Orbitolites sp. of Ypresian–Bartonian, Miliola sp of early–middle Eocene, Idalina grelaudae of early Lutetian–Priabonian, Ammobaculites agglutinans, Amphimorphina crassa, Dentalina sp., Nodosaria sp., Operculina sp., Lenticulina sp., Quinqueloculina sp. and Amphistegina sp. of Eocene. This unit passes upward with a conformity into reefal limestones of the middle/late Eocene–early Oligocene Soğucak Formation. At times, the limestone overlies the conformity, there is an indication of a prograding sedimentary sequence. The new stratigraphic, paleontological, sedimentological and structural findings related to the NW Thrace Basin suggest a strong transtensional/extensional tectonic control for the initial Paleogene sedimentary deposition during the Ypresian–Lutetian period as shown by fossil content of the Akalan Formation. Right lateral-slip extensional tectonics appears to have had activity during the middle–late Eocene transgressive deposition of the Soğucak Formation when the basin became deepened and enlarged.


2020 ◽  
Vol 57 (3) ◽  
pp. 271-304
Author(s):  
Edward J. Sterne

This study was undertaken to determine the structure and genesis of the Boulder-Weld allochthon (BWA), the 216 mi2 (559 km2) remnant of a once larger feature, that moved east from the flank of the Front Range into the western part of the Denver Basin. This review of surface and subsurface data revealed new aspects of the BWA, especially in its western part. There, the decollement of the BWA ramps 900 feet up-section to the east from a near bedding-parallel detachment low in the upper transition member of the Pierre Shale to a bedding-parallel detachment near the base of the Fox Hills Formation. Repeated sections found in wells east of the decollement ramp demonstrate up to two miles of translation in the system. Secondary faults in the hanging wall of the allochthon include antithetic thrusts bounding pop-up structures and occasional normal faults that almost exclusively overprint the decollement ramp. The hanging wall is also cut by a postulated tear fault separating areas exhibiting different amounts of translation. The western, trailing edge of the decollement shows attenuation in its hanging wall that increases to the west. This part of the decollement either represents a very low-angle breakaway normal fault or a thrust fault cutting slightly down-section in the direction of transport. Past studies perceived a southeast transport direction for the BWA in contrast to the northeast slip directions on nearby Laramide thrusts, a difference used to interpret the allochthon as a gravity slide. However, similar east-west oriented slickenlines on thrusts across the western part of the allochthon and into the neighboring Front Range leave open the possibility the BWA originated as a Laramide thrust sheet. Furthermore, both the BWA and Laramide thrusts in the neighboring Front Range utilized detachments near the top of the Pierre Shale, suggesting a possible common genesis. Given the available data, both the gravity slide and Laramide thrust models provide viable explanations for the BWA.


2021 ◽  
Author(s):  
László Fodor ◽  
Attila Balázs ◽  
Gábor Csillag ◽  
István Dunkl ◽  
Gábor Héja ◽  
...  

<p>The Pannonian Basin is a continental extensional basin system with various depocentres within the Alpine–Carpathian–Dinaridic orogenic belt. Along the western basin margin, exhumation along the Rechnitz, Pohorje, Kozjak, and Baján detachments resulted in cooling of diverse crustal segments of the Alpine nappe stack (Koralpe-Wölz and Penninic nappes); the process is constrained by variable thermochronological data between ~25–23 to ~15 Ma. Rapid subsidence in supradetachment sub-basins indicates the onset of sedimentation in the late Early Miocene (Ottnangian? or Karpatian, from ~19 or 17.2 Ma). In addition to extensional structures, strike-slip faults mostly accommodated differential extension between domains marked by large low-angle normal faults. Branches of the Mid-Hungarian Shear Zone (MHZ) also played the role of transfer faults, although shear-zones perpendicular to extension also occurred locally.</p><p>During this period, the distal margin of the large tilted block in the hanging wall of the detachment system, the pre-Miocene rocks of the Transdanubian Range (TR) experienced surface exposure, karstification, and terrestrial sedimentation. The situation changed after ~15–14.5 Ma when faulting, subsidence, and basin formation shifted north-eastward. Migration of normal faulting resulted in fault-controlled basin subsidence within the TR which lasted until ~8 Ma.</p><p>3D thermo-mechanical lithospheric and basin-scale numerical models predict similar spatial migration of the depocenters from the orogenic margin towards the basin center. The reason for this migration is found in the interaction of deep Earth and surface processes. A lithospheric and smaller crustal-scale weak zones inherited from a preceding orogenic structure localize initial deformation, while their redistribution controls asymmetric extension accompanied by the upraising of the asthenopshere and flexure of the lithosphere. Models suggest ~4–5 Myr delay of the onset of sedimentation after the onset of crustal extension and ~150–200 km of shift in depocenters during ~12 Myr. These modeling results agree well with our robust structural and chronological data on basin migration.</p><p>Simultaneously with or shortly after depocenter migration, the southern part of the former rift system, mostly near the MHZ, underwent ~N–S shortening; the basin fill was folded and the boundary normal faults were inverted. The style of deformation changed from pure contraction to transpression. The Baján detachment could be slightly folded, although its synformal shape could also be considered a detachment corrugation. Deformation was dated to ~15–14 Ma (middle Badenian) in certain sub-basins while in other sub-basins deformation seems to be continuous throughout the late Middle Miocene from ~15 Ma to ~11.6 Ma.</p><p>Another contractional pulse occurred in the earliest Late Miocene, between ~11.6 and ~9.7 Ma while the western part of the TR was still affected by extensional faulting and subsidence. All these contractional deformations can be linked to the much larger fold-and-thrust belt that extends from the Southern and Julian Alps through the Sava folds region in Slovenia. Contraction is still active, as indicated by recent earthquakes in Croatia.</p><p>Mol Ltd. largely supported the research. The research is supported by the scientific grant NKFI OTKA 134873 and the Slovenian Research Agency (research core funding No. P1-0195).</p>


2013 ◽  
Vol 50 (5) ◽  
pp. 576-598 ◽  
Author(s):  
J.F. Cubley ◽  
D.R.M. Pattison ◽  
D.A. Archibald ◽  
M. Jolivet

The Grand Forks complex (GFC) is a metamorphic core complex within the composite Shuswap complex in the southern Omineca belt of the Canadian Cordillera. It is juxtaposed against the surrounding low-grade rocks of the pericratonic Quesnel terrane by outward-dipping Eocene normal faults. The GFC attained peak metamorphic conditions of 750–800 °C and 5.5–6.0 kbar (1 kbar = 100 MPa) in the late Paleocene to early Eocene, followed by ∼2.5 kbar of near-isothermal decompression at upper-amphibolite to granulite facies conditions (∼725–750 °C) in the early Eocene. Subsequent low-temperature greenschist-facies exhumation (∼0.7–1.5 kbar) was accommodated by the brittle–ductile Kettle River normal fault (KRF) on the east flank of the complex and the Granby fault (GF) on the west flank. This study presents 16 new 40Ar/39Ar hornblende and biotite dates from the GFC and low-grade rocks in the hanging walls to the KRF and GF. Cooling of the GFC through the closure temperature of hornblende (∼ 530 °C) is constrained to the interval between ∼54 and 51.4 ± 0.5 Ma, whereas cooling through the closure temperature of biotite (∼280 °C) occurred at 51.4 ± 0.2 Ma. In the hanging wall of the KRF, cooling through the closure temperature of hornblende and biotite occurred nearly coevally at 51.7 ± 0.6 Ma and 51.0 ± 1.0 Ma, respectively. Five apatite fission track dates (closure temperature ∼110 °C) from the GFC and adjacent hanging walls are indistinguishable within error, yielding an average age of 34.6 ± 2.0 Ma. The lack of difference in biotite and apatite ages between the GFC and the low-grade hanging wall rocks against which it is juxtaposed suggests no significant movement on the KRF and GF after ca. 51 Ma. Results from this study and a previous study on U–Pb dating of the GFC document rapid cooling of the GFC in excess of 200 °C/Ma in a 4 Ma interval between 55 and 51 Ma (Eocene). This rapid phase of exhumation of the GFC was followed by 15 Ma of slow cooling (∼10 °C/Ma) of the joined GFC and hanging wall between ∼280 °C (biotite closure) and ∼110 °C (apatite closure).


2020 ◽  
Author(s):  
Jeni McDermott ◽  
Tim Redfield

<p>The sharp, asymmetric ‘Great Escarpment’ of southwestern Norway mimics landforms commonly associated with fault-controlled ‘footwall uplift’ mountain ranges, bringing into question whether climate-driven erosion and consequent mass redistribution can generate kilometer scale topographic relief, or if tectonic forces are required instead.  Here we report on patterns of relief and fluvial incision in a region characterized by glacial sculpting, rapid isostatic uplift, and a well-established brittle template of normal faults.</p><p>The Surna valley (Surnadalen) of mid-southern Norway is a SW-NE striking wide, alluvial, U-shaped valley whose SW margin defines part of the Great Escarpment. Surnadalen displays clear morphometric asymmetry: its inland (SE) side is defined by high elevation (>1000 m) and well-developed drainage networks that display clear evidence of alpine glacial carving, while its seaward side is lower (~500 m) and has neither developed drainage networks nor evidence for valley glaciers. Inland drainages display a distinct set of aligned knickzones that maintain characteristics inconsistent with transient fluvial response to deglaciation. Incision occurs across fluvial process zones with no correlation to drainage area, suggesting regional forcing rather than catchment-scale drivers. Both lithology and structure are nearly identical across greater Surnadalen, and no change in rock type or erodibility correlate with the incision zones. Incision is axially asymmetric: All knickzones occur at the base of the ‘Great Escarpment,’ and the Tjellefonna Fault Zone (TFZ), a strand of a regionally important fault complex, projects into Surnadalen’s axis and aligns directly with the knickzone trace. The depth of incision decays from SW to NE in the direction of propagation of the TFZ tip at a mathematically predictable rate. We interpret the knickzone alignment to reflect active normal fault control over incision localization and depth. The depth and morphology of incision suggests Surnadal’s incision survived multiple glacial cycles. This interpretation implies that Norway’s ancestral structural template continues to impose a fundamental control over the creation and maintenance of the Great Escarpment. Although fault reactivation is not the result of regional tectonic extension, but rather is likely the product of erosion-induced shifting of loads, the pre-existing margin architecture appears to dominate the isostatic response to erosion.</p>


Sign in / Sign up

Export Citation Format

Share Document