scholarly journals Analysis of Petrinja 2020 Earthquake (Croatia) and First 500 Aftershocks >M1.0, Identification of Their Sources and Seismogenic Faults

Author(s):  
Tihomir Marjanac ◽  
Marina Čalogović ◽  
Karlo Bermanec ◽  
Ljerka Marjanac

Abstract Strong earthquake of M6.4 stroke Petrinja and neighbouring cities of Sisak and Glina in Croatia on December 29th 2020. It was preceded by two foreshocks of M5.2 and M5.0, and followed by a series of aftershocks of various magnitudes and intensities. We have analysed first 500 earthquakes and aftershocks of > M1.0 which occurred from December 28th 2020 to January 19th 2021, their frequency, focal depths, and coseismic surface phenomena. Correlation of focal depths revealed the source of earthquakes was faulting of hanging wall of a listric normal fault with NW-SE strike and dip towards NE. Major fault seems to have caused earthquakes with only minor magnitudes. The strongest two earthquakes of M6.4 and M5.2 were initiated on synthetic fault, whereas M5.0 earthquake was initiated on an antithetic fault. Almost 50% of all seismic energy of the first 500 analysed seismic events over M1.0 was released on 1 km and 10 km deep hypocentres. Focal mechanisms of major earthquakes and strong fore- and aftershocks indicate dextral-slip mechanism, which is also in accordance with the orientation of surface cracks, land faulting and sand volcano trains. Co-seismic surface phenomena are land cracks and fissures, land faults, sand volcanoes, eruptive springing of ground water, activation of landslides, and formation of dozens of collapse sinkholes which continued to form and grow for about a month following the major earthquake.

Author(s):  
Reinhard Wolff ◽  
Ralf Hetzel ◽  
István Dunkl ◽  
Aneta A. Anczkiewicz

AbstractThe Brenner normal fault bounds the Tauern Window to the west and accommodated a significant portion of the orogen-parallel extension in the Eastern Alps. Here, we use zircon (U–Th)/He, apatite fission track, and apatite (U–Th)/He dating, thermokinematic modeling, and a topographic analysis to constrain the exhumation history of the western Tauern Window in the footwall of the Brenner fault. ZHe ages from an E–W profile (parallel to the slip direction of the fault) decrease westwards from ~ 11 to ~ 8 Ma and suggest a fault-slip rate of 3.9 ± 0.9 km/Myr, whereas AFT and AHe ages show no spatial trends. ZHe and AFT ages from an elevation profile indicate apparent exhumation rates of 1.1 ± 0.7 and 1.0 ± 1.3 km/Myr, respectively, whereas the AHe ages are again spatially invariant. Most of the thermochronological ages are well predicted by a thermokinematic model with a normal fault that slips at a rate of 4.2 km/Myr between ~ 19 and ~ 9 Ma and produces 35 ± 10 km of extension. The modeling reveals that the spatially invariant AHe ages are caused by heat advection due to faulting and posttectonic thermal relaxation. The enigmatic increase of K–Ar phengite and biotite ages towards the Brenner fault is caused by heat conduction from the hot footwall to the cooler hanging wall. Topographic profiles across an N–S valley in the fault footwall indicate 1000 ± 300 m of erosion after faulting ceased, which agrees with the results of our thermokinematic model. Valley incision explains why the Brenner fault is located on the western valley shoulder and not at the valley bottom. We conclude that the ability of thermokinematic models to quantify heat transfer by rock advection and conduction is crucial for interpreting cooling ages from extensional fault systems.


Lithosphere ◽  
2021 ◽  
Vol 2021 (Special 2) ◽  
Author(s):  
Junjie Zou ◽  
Honglin He ◽  
Yusuke Yokoyama ◽  
Adam D. Sproson ◽  
Yoshiki Shirahama ◽  
...  

Abstract The quantitative morphology of bedrock fault surfaces combined with aerial surveys and field identification is a useful approach to identify paleoearthquakes, obtain coseismic slips, and evaluate the seismogenic capacity of active faults in bedrock areas where traditional trenching methods are not applicable. Here, we report a case study of the Jiaocheng Fault (JCF) in the Shanxi Rift, China. Although several studies have been conducted on the JCF, its coseismic slip history and seismogenic capacity are still unclear. To address these problems, we investigated two bedrock fault surfaces, Sixicun (SXC) and Shanglanzhen (SLZ), on the JCF’s northern segment using quantitative morphological analysis together with aerial and field surveys. Quantitative fractal analysis based on the isotropic empirical variogram and moving window shows that both bedrock fault surfaces have the characteristics of vertical segmentation, which is likely due to periodic earthquakes, the coseismic slip of which can be determined by the height of the segments. Three seismic events at SXC, with a coseismic vertical slip of 1.74, 1.65, and 1.99 m, and three seismic events at SLZ, with a coseismic vertical slip of 1.32, 2.35, and 1.88 m, are identified. Compared with the previous studies, these three seismic events may occur in the Holocene, but it requires absolute dating ages to support, which is also the focus of our future work. Considering the seismologic capability (M>7.5) and the relationship between the recurrence interval of ~2.6 kyr and elapsed time of more than 3 kyr, the seismic hazard of the northern and middle segments of the JCF requires immediate attention.


2021 ◽  
Author(s):  
Fang Ru-Ya ◽  
Lin Cheng-Han ◽  
Lin Ming-Lang

<p>Recent earthquake events have shown that besides the strong ground motions, the coseismic faulting often caused substantial ground deformation and destructions of near-fault structures. In Taiwan, many high-rise buildings with raft foundation are close to the active fault due to the dense population. The Shanchiao Fault, which is a famous active fault, is the potentially dangerous normal fault to the capital of Taiwan (Taipei). This study aims to use coupled FDM-DEM approach for parametrically analyzing the soil-raft foundation interaction subjected to normal faulting. The coupled FDM-DEM approach includes two numerical frameworks: the DEM-based model to capture the deformation behavior of overburden soil, and the FDM-based model to investigate the responses of raft foundation. The analytical approach was first verified by three  benchmark cases and theoretical solutions. After the verification, a series of small-scale sandbox model was used to validate the performance of the coupled FDM-DEM model in simulating deformation behaviors of overburden soil and structure elements. The full-scale numerical models were then built to understand the effects of relative location between the fault tip and foundation in the normal fault-soil-raft foundation behavior. Preliminary results show that the raft foundation located above the fault tip suffered to greater displacement, rotation, and inclination due to the intense deformation of the triangular shear zone in the overburden soil. The raft foundation also exhibited distortion during faulting. Based on the results, we suggest different adaptive strategies for the raft foundation located on foot wall and hanging wall if the buildings are necessary to be constructed within the active fault zone. It is the first time that the coupled FDM-DEM approach has been carefully validated and applied to study the normal fault-soil-raft foundation problems. The novel numerical framework is expected to contribute to design aids in future practical engineering.</p><p><strong>Keywords</strong>: Coupled FDM-DEM approach; normal faulting; ground deformation; soil-foundation interaction; raft foundation.</p>


2006 ◽  
Vol 143 (5) ◽  
pp. 609-620 ◽  
Author(s):  
M. BRÖCKER ◽  
L. FRANZ

This paper reports new geochronological data from the island of Andros, one of the less-studied islands of the Cycladic blueschist belt in the central Aegean Sea. On Andros, two tectonic units can be distinguished, the Makrotantalon unit and the Lower unit, which are separated by a low-angle normal fault, related to large-scale regional extension. Mineral assemblages indicate greenschist-facies P–T conditions for the last metamorphic overprint of both units. In contrast to the structurally lower unit, unambiguous indications for an earlier high-pressure stage were not recognized in rocks collected above the tectonic contact. Owing to a polyphase metamorphic evolution and incomplete resetting of the Rb–Sr isotope system during overprinting, phengite geochronology indicates a wide range in dates between c. 104 and 21 Ma for the Makrotantalon unit, as observed in rocks of similar structural position elsewhere in the Cyclades. The new Rb–Sr data support the interpretation, but are not conclusive evidence, that tectonic slices within the hanging wall were affected by two periods of Cretaceous metamorphism (c. 100–90 Ma and c. 80–70 Ma) and a Miocene event (c. 21 Ma). Tectonic juxtaposition was accomplished around c. 21 Ma. The Lower unit is correlative with the Cycladic high-pressure occurrences. Rb–Sr phengite dating yielded the same range in ages as determined elsewhere in the region for white mica of high-pressure rocks (c. 50–40 Ma) and their overprinted, greenschist-facies derivatives (c. 23–21 Ma). An age gradient towards the tectonic contact with the overlying Makrotantalon unit is not developed. The new results fit well into the previously established chronological framework for the larger study area. Indications for regional differences in the timing of the HP stage and/or the greenschist-facies overprint have not yet been found.


1984 ◽  
Vol 24 (1) ◽  
pp. 421
Author(s):  
R. J. Gray ◽  
D. C. Roberts

A synthetic seismic section was modelled to help in the interpretation of Cooper Basin seismic lines which cross major faults and exhibit shadow zones.A major fault bounding the northwest flank of the Packsaddle Structure in the Merrimelia-Innamincka Farmout Block in South Australia was selected for modelling. A geological cross-section postulated on the basis of wells on either side of the fault was fed into the seismic modelling package AIMS (Advanced Interpretive Modelling System — licensed by Geoquest International Inc.) to produce a synthetic seismic line. This synthetic line provided a realistic match with an actual seismic line across the fault. Pre-stack migration of the actual seismic data is suggested to provide additional evidence for the reliability of the model.The shadow zone in the synthetic section is caused by dipping events in the fault shadow zone created by compaction of the Toolachee and Patchawarra Formations along the hanging wall of the fault plane. The dipping events cause reflected energy to be detected outside the fault zone. The large component of compaction within the Permian section is largely ascribed to thick coal horizons. The possibility of petroleum traps in the hanging wall of the fault is inferred and drilling is recommended.


2020 ◽  
Vol 191 ◽  
pp. 11
Author(s):  
Marilou de Vals ◽  
Renaldo Gastineau ◽  
Amélie Perrier ◽  
Romain Rubi ◽  
Isabelle Moretti

The choice of stones by the ancient Greeks to build edifices remains an open question. If the use of local materials seems generalized, allochthonous stones are usually also present but lead to obvious extra costs. The current work aims to have an exhaustive view of the origins of the stones used in the Sanctuary of Delphi. Located on the Parnassus zone, on the hanging wall of a large normal fault related to the Corinth Rift, this Apollo Sanctuary is mainly built of limestones, breccia, marbles, as well as more recent poorly consolidated sediments generally called pôros in the literature. To overpass this global view, the different lithologies employed in the archaeological site have been identified, as well as the local quarries, in order to find their origins. The different limestones are autochthons and come from the Upper Jurassic – Cretaceous carbonate platform of the Tethys Ocean involved in the Hellenides orogen. Those limestones of the Parnassus Massif constitute the majority of the rock volume in the site; a specific facies of Maastrichtian limestone called “Profitis Ilias limestone” has been used for the more prestigious edifices such as the Apollo Temple. The corresponding ancient quarry is located few kilometers west of the sanctuary. Then, slope breccia has been largely used in the sanctuary: it crops out in and around the site and is laying on top of the carbonates. Finally, the pôros appear to be very variable and seven different facies have been documented, including travertine, oolitic grainstone, marine carbonates and coarse-grained sandstones. All these recent facies exist in the south-east shore of the Gulf of Corinth, although – except for the grainstone – the quarries are not yet known.


2004 ◽  
Vol 52 (3) ◽  
pp. 215-233 ◽  
Author(s):  
Glen S. Stockmal ◽  
Art Slingsby ◽  
John W.F. Waldron

Abstract Recent hydrocarbon exploration in western Newfoundland has resulted in six new wells in the Port au Port Peninsula area. Port au Port No.1, drilled in 1994/95, penetrated the Cambro-Ordovician platform and underlying Grenville basement in the hanging wall of the southeast-dipping Round Head Thrust, terminated in the platform succession in the footwall of this basement-involved inversion structure, and discovered the Garden Hill petroleum pool. The most recent well, Shoal Point K-39, was drilled in 1999 to test a model in which the Round Head Thrust loses reverse displacement to the northeast, eventually becoming a normal fault. This model hinged on an interpretation of a seismic reflection survey acquired in 1996 in Port au Port Bay. This survey is now in the public domain. In our interpretation of these data, the Round Head Thrust is associated with another basement-involved feature, the northwest-dipping Piccadilly Bay Fault, which is mapped on Port au Port Peninsula. Active as normal faults in the Taconian foreland, both these faults were later inverted during Acadian orogenesis. The present reverse offset on the Piccadilly Bay Fault was previously interpreted as normal offset on the southeast-dipping Round Head Thrust. Our new interpretation is consistent with mapping on Port au Port Peninsula and north of Stephenville, where all basement-involved faults are inverted and display reverse senses of motion. It also explains spatially restricted, enigmatic reflections adjacent to the faults as carbonate conglomerates of the Cape Cormorant Formation or Daniel’s Harbour Member, units associated with inverted thick-skinned faults. The K-39 well, which targeted the footwall of the Round Head Thrust, actually penetrated the hanging wall of the Piccadilly Bay Fault. This distinction is important because the reservoir model invoked for this play involved preferential karstification and subsequent dolomitization in the footwalls of inverted thick-skinned faults. The apparent magnitude of structural inversion across the Piccadilly Bay Fault suggests other possible structural plays to the northeast of K-39.


2015 ◽  
Vol 3 (3) ◽  
pp. SY27-SY40 ◽  
Author(s):  
Sherif M. Hanafy ◽  
Ann Mattson ◽  
Ronald L. Bruhn ◽  
Shengdong Liu ◽  
Gerard T. Schuster

We have developed two case studies demonstrating the use of high-resolution seismic tomography and reflection imaging in the field of paleoseismology. The first study, of the Washington fault in southern Utah, USA, evaluated the subsurface deposits in the hanging wall of the normal fault. The second study, of the Mercur fault in the eastern Great Basin of Utah, USA, helped to establish borehole locations for sampling subsurface colluvial deposits buried deeper than those previously trenched along the fault zone. We evaluated the seismic data interpretations by comparison with data obtained by trenching and logging deposits across the Washington fault, and by drill-core sampling and video logging of boreholes penetrating imaged deposits along the Mercur fault. The seismic tomograms provided critical information on colluvial wedges and faults but lacked sufficient detail to resolve individual paleoearthquakes.


2009 ◽  
Vol 55 (191) ◽  
pp. 389-399 ◽  
Author(s):  
J.A. Rial ◽  
C. Tang ◽  
K. Steffen

AbstractThe steep increase in Greenland’s glacial earthquake activity detected by the Global Seismographic Network since the late 1990s suggests that a close inspection of these events might provide clues to the nature and origin of such seismic activity. Here we discuss the detection of large, unexpected seismic events of extraordinarily long duration (10–40 min) occurring about once every 2 days, and localized in the ice stream that feeds the Earth’s fastest-moving glacier (Jakobshavn Isbræ) from the east. These ‘glacial rumblings’ represent an ice-mass wasting process that is greater and more frequent than glacial earthquakes have suggested. Probably triggered by calving, the rumblings are all very similar regardless of duration, and all end with a sharp, earthquake-like event in which the largest seismic amplitude is in the rumbling and that might signal the collapse of large ice masses upstream. By calculating the total amount of seismic energy released as rumblings, we estimate that the maximum seasonal amount of ice moved seismogenically down the ice stream is up to 12 km3, or ∼30% of the average annual iceberg discharge in Jakobshavn.


2017 ◽  
Vol 50 (1) ◽  
pp. 448
Author(s):  
I.P. Panagiotopoulos ◽  
V. Kapsimalis ◽  
Chr. Ioakim ◽  
A. Karageorgis ◽  
G. Rousakis ◽  
...  

Prominent geomorphological features of the shallow continental shelf west of the Kavala Bay (Loutra Eleftheron-Nea Peramos) were mapped using the data from a hydrographic survey (June 2014) of 320 nautical miles during which high resolution multibeam bathymetry and seismic-reflection subbottom profiling were carried out simultaneously. A fault zone comprised by a set of two primary sigmoidal gravity faults (recorded lengths and measured offsets: 12 km, 5 km and > 40 m, 25 m, respectively), with distinct expression on the seabed, and three other secondary gravity faults situated southern of the major faults, revealing synsedimentary tectonics, was identified. The striking difference between the texture of the footwall block sediments of the northern major fault and the texture of the sediments occupying the deep hanging wall block of the southern major fault emphasizes the impact of local tectonics on the sedimentary evolution of the study area. Concerning the observed bedforms, the most interesting were the sand dunes occurring at depths from 25 m to 65 m at least and occupying the northeast part of the study area. Their large dimensions and orientation in relation to the coastline position imply as a mechanism for their formation intense bottom-current activity.


Sign in / Sign up

Export Citation Format

Share Document