scholarly journals Methods of erection of high-rise buildings

2018 ◽  
Vol 33 ◽  
pp. 03040 ◽  
Author(s):  
Nadezhda Cherednichenko ◽  
Pavel Oleinik

The article contains the factors determining the choice of methods for organizing the construction and production of construction and installation work for the construction of high-rise buildings. There are also indicated specific features of their underground parts, characterized by powerful slab-pile foundations, large volumes of earthworks, reinforced bases and foundations for assembly cranes. The work cycle is considered when using reinforced concrete, steel and combined skeletons of high-rise buildings; the areas of application of flow, separate and complex methods are being disclosed. The main conditions for the erection of high-rise buildings and their components are singled out: the choice of formwork systems, delivery and lifting of concrete mixes, installation of reinforcement, the formation of lifting and transporting and auxiliary equipment. The article prescribes the reserves of reduction in the duration of construction due to the creation of: complex mechanized technologies for the efficient construction of foundations in various soil conditions, including in the heaving, swelling, hindered, subsidence, bulk, water-saturated forms; complex mechanized technologies for the erection of monolithic reinforced concrete structures, taking into account the winter conditions of production and the use of mobile concrete-laying complexes and new generation machines; modular formwork systems, distinguished by their versatility, ease, simplicity in operation suitable for complex high-rise construction; more perfect methodology and the development of a set of progressive organizational and technological solutions that ensure a rational relationship between the processes of production and their maximum overlap in time and space.

Author(s):  
Xiaowei Cheng ◽  
Haoyou Zhang

AbstractUnder strong earthquakes, reinforced concrete (RC) walls in high-rise buildings, particularly in wall piers that form part of a coupled or core wall system, may experience coupled axial tension–flexure loading. In this study, a detailed finite element model was developed in VecTor2 to provide an effective tool for the further investigation of the seismic behaviour of RC walls subjected to axial tension and cyclic lateral loading. The model was verified using experimental data from recent RC wall tests under axial tension and cyclic lateral loading, and results showed that the model can accurately capture the overall response of RC walls. Additional analyses were conducted using the developed model to investigate the effect of key design parameters on the peak strength, ultimate deformation capacity and plastic hinge length of RC walls under axial tension and cyclic lateral loading. On the basis of the analysis results, useful information were provided when designing or assessing the seismic behaviour of RC slender walls under coupled axial tension–flexure loading.


2014 ◽  
Vol 926-930 ◽  
pp. 661-664
Author(s):  
Min Chen

Setting the late poured band is to solve different settlement between high-rise buildings and to settle the reinforced concrete body temperature--contraction stress. In addition, it effectively avoids the harmful cracks caused by the reinforced concrete body. So it is vital to set the late poured band and organize the correct construction. This paper aims at elaborating types of post pouring belt, construction preparation, construction technique, quality and so on.


2018 ◽  
Vol 33 ◽  
pp. 02010 ◽  
Author(s):  
Anastasia Morzhukhina ◽  
Stanislav Nikitin ◽  
Elena Akimova

Aggressive environments have a significant impact on destruction of many reinforced concrete structures, such as high-rise constructions or chemical plants. For example, some high-rise constructions are equipped with a swimming pool, so they are exposed to chloride ions in the air. Penetration of aggressive chemical substances into the body of concrete contributes to acceleration of reinforced concrete structure corrosion that in turn leads to load bearing capacity loss and destruction of the building. The article considers and analyzes the main technologies for calculating penetration depth of various aggressive substances into the body of concrete. The calculation of corrosion depth was made for 50-year service life.


2018 ◽  
Vol 65 ◽  
pp. 08008
Author(s):  
Syed Muhammad Bilal Haider ◽  
Zafarullah Nizamani ◽  
Chun Chieh Yip

The reinforced concrete structures, not designed for seismic conditions, amid the past earthquakes have shown us the significance of assessment of the seismic limit state of the current structures. During seismic vibrations, every structure encountered seismic loads. Seismic vibrations in high rise building structure subjects horizontal and torsional deflections which consequently develop extensive reactions in the buildings. Subsequently, horizontal stiffness can produce firmness in the high rise structures and it resists all the horizontal and torsional movements of the building. Therefore, bracing and shear wall are the mainstream strategies for reinforcing the structures against their poor seismic behaviours. It is seen before that shear wall gives higher horizontal firmness to the structure when coupled with bracing however it will be another finding that in building model, which location is most suitable for shear wall and bracing to get better horizontal stability. In this study, a 15 story residential reinforced concrete building is assessed and analyzed using building code ACI 318-14 for bracing and shear wall placed at several different locations of the building model. The technique used for analysis is Equivalent Static Method by utilizing a design tool, finite element software named ETABS. The significant parameters examined are lateral displacement, base shear, story drift, and overturning moment.


Sign in / Sign up

Export Citation Format

Share Document