scholarly journals Climate Change Impact on Rainfall: How will Threaten Wheat Yield?

2018 ◽  
Vol 37 ◽  
pp. 03001
Author(s):  
K. Tafoughalti ◽  
E.M. El Faleh ◽  
Y. Moujahid ◽  
F. Ouargaga

Climate change has a significant impact on the environmental condition of the agricultural region. Meknes has an agrarian economy and wheat production is of paramount importance. As most arable area are under rainfed system, Meknes is one of the sensitive regions to rainfall variability and consequently to climate change. Therefore, the use of changes in rainfall is vital for detecting the influence of climate system on agricultural productivity. This article identifies rainfall temporal variability and its impact on wheat yields. We used monthly rainfall records for three decades and wheat yields records of fifteen years. Rainfall variability is assessed utilizing the precipitation concentration index and the variation coefficient. The association between wheat yields and cumulative rainfall amounts of different scales was calculated based on a regression model. The analysis shown moderate seasonal and irregular annual rainfall distribution. Yields fluctuated from 210 to 4500 Kg/ha with 52% of coefficient of variation. The correlation results shows that wheat yields are strongly correlated with rainfall of the period January to March. This investigation concluded that climate change is altering wheat yield and it is crucial to adept the necessary adaptation to challenge the risk.

2021 ◽  
Vol 893 (1) ◽  
pp. 012006
Author(s):  
F Aditya ◽  
E Gusmayanti ◽  
J Sudrajat

Abstract Climate change has been a prominent issue in the last decade. Climate change on a global scale does not necessarily have the same effect in different regions. Rainfall is a crucial weather element related to climate change. Rainfall trends analysis is an appropriate step in assessing the impact of climate change on water availability and food security. This study examines rainfall variations and changes at West Kalimantan, focusing on Mempawah and Kubu Raya from 2000-2019. The Mann-Kendall (MK) and Sen's Slope estimator test, which can determine rainfall variability and long-term monotonic trends, were utilized to analyze 12 rainfall stations. The findings revealed that the annual rainfall pattern prevailed in all locations. Mempawah region tends to experience a downward trend, while Kubu Raya had an upward trend. However, a significant trend (at 95% confidence level) was identified in Sungai Kunyit with a slope value of -33.20 mm/year. This trend indicates that Sungai Kunyit will become drier in the future. The results of monthly rainfall analysis showed that significant upward and downward trends were detected in eight locations. Rainfall trends indicate that climate change has occurred in this region.


2020 ◽  
Vol 14 (3) ◽  
pp. 522-536 ◽  
Author(s):  
Marwa Gamal Mohamed Ali ◽  
Mahmoud Mohamed Ibrahim ◽  
Ahmed El Baroudy ◽  
Michael Fullen ◽  
El-Said Hamad Omar ◽  
...  

2016 ◽  
Vol 4 (3) ◽  
pp. 13 ◽  
Author(s):  
Touré Halimatou ◽  
Zampaligre Nouhoun ◽  
Traoré Kalifa ◽  
Kyei-Baffour Nicholas

Several studies predict that climate change will highly affect the African continent. These changes in climate and climate variability may be challenging issues for future economic development of the continent in general, and particularly in the region of sub Saharan Africa. Offering a case study of Sahelian zone of Mali in the present study aimed to understand farmers’ perceptions of climate variability and change and to evaluate adaptation options used by farmers in the Cinzana commune of Mali. One hundred and nineteen farmers were interviewed using a questionnaire designed with six sections. The result showed that all farmers interviewed were aware of climate change and climate variability. The Farmers perceived a decrease in annual rainfall variability and an increase of temperature as main factors of climate change and climate variability. The observed meteorological data, showed a decrease of precipitation distribution during the last 14 years of which was observed by farmers. Several strategies such as selling animals, use of improved crop varieties, new activities (outside agriculture) and credit were the commonly preferred adaptation strategies to deal with climate change and variability. Factors surveyed, age, gender, education, household size, farm size were found to be significantly correlated to self-reported to adaptation.


2013 ◽  
Vol 52 (6) ◽  
pp. 1303-1317 ◽  
Author(s):  
Christian Seiler ◽  
Ronald W. A. Hutjes ◽  
Pavel Kabat

AbstractBolivia is facing numerous climate-related threats, ranging from water scarcity due to rapidly retreating glaciers in the Andes to a partial loss of the Amazon forest in the lowlands. To assess what changes in climate may be expected in the future, 35 global circulation models (GCMs) from the third and fifth phases of the Coupled Model Intercomparison Project (CMIP3/5) were analyzed for the Bolivian case. GCMs were validated against observed surface air temperature, precipitation, and incoming shortwave (SW) radiation for the period 1961–90. Weighted ensembles were developed, and climate change projections for five emission scenarios were assessed for 2070–99. GCMs revealed an overall cold, wet, and positive-SW-radiation bias and showed no substantial improvement from the CMIP3 to the CMIP5 ensemble for the Bolivian case. Models projected an increase in temperature (2.5°–5.9°C) and SW radiation (1%–5%), with seasonal and regional differences. In the lowlands, changes in annual rainfall remained uncertain for CMIP3 whereas CMIP5 GCMs were more inclined to project decreases (−9%). This pattern also applied to most of the Amazon basin, suggesting a higher risk of partial biomass loss for the CMIP5 ensemble. Both ensembles agreed on less rainfall (−19%) during drier months (June–August and September–November), with significant changes in interannual rainfall variability, but disagreed on changes during wetter months (January–March). In the Andes, CMIP3 GCMs tended toward less rainfall (−9%) whereas CMIP5 tended toward more (+20%) rainfall during parts of the wet season. The findings presented here may provide inputs for studies of climate change impact that assess how resilient human and natural systems are under different climate change scenarios.


Author(s):  
Dr. Vasudev S. Salunke ◽  
Pramila. P. Zaware

Rainfall is one of the vital form of precipitation which affects not only agricultural activity but also entire ecology in any region. Hence rainfall distribution and its trends in district is important to understand water availability and to take decisions for the agricultural activities in area. This research paper is an effort to assess the spatial and temporal rainfall variability of Ahmednagar district of Maharashtra State. Ahmednagar is popularly known as the largest district of Maharashtra with fourteen Talukas. The average annual rainfall of this district is 621 mm with an average of 46 rainy days. In this study the spatial and temporal rainfall distribution of this district is taken in to account. Short-term annual rainfall data are considered from 1998 to 2014. The daily rainfalls of monsoon months of all the fourteen Taluka are analyzed for the year 2015.It was found that spatial and temporal variability is high in the District.


2021 ◽  
Vol 23 (1) ◽  
pp. 20-27
Author(s):  
Cilcia Kusumastuti ◽  
Dicky Gode ◽  
Yobella Febe Kurnianto ◽  
Frederik Jones Syaranamual

Climate change impacts have gained great attention to be studied in various fields. In this paper, an investigation of rainfall pattern change is performed using three statistical methods, i.e., simple linear regression, t-test, and Mann-Kendall’s test. The analysis is performed at 10- and 20-year time scales of daily, monthly, and annual rainfall in Flores Island, a dry region in Indonesia. In general, an increasing monthly rainfall trend is detected in the rainy season (October – April) at a 20-year period, using all three methods. Specifically, a significant increasing trend in March 1989 – 2008 is observed, and it contributes to the significant increasing trend of annual rainfall.  The findings presented in this paper should be an alert for potential climate change impacts in the region. The positive consideration of having more rainfall in a dry region might turn into a negative reality when adaptation measures are not well-prepared.


2022 ◽  
Vol 12 (01) ◽  
pp. 113-131
Author(s):  
Aichetou Dia-Diop ◽  
Malick Wade ◽  
Sinclaire Zebaze ◽  
Abdoulaye Bouya Diop ◽  
Eric Efon ◽  
...  

2019 ◽  
Vol 2019 ◽  
pp. 1-7 ◽  
Author(s):  
Conrad Kyei-Mensah ◽  
Rosina Kyerematen ◽  
Samuel Adu-Acheampong

Crop production in the Fanteakwa District is predominantly rainfed, exposing this major livelihood activity to the variability or change in rainfall pattern. The net potential effect of severe changes in rainfall pattern is the disruption in crop production leading to food insecurity, joblessness, and poverty. As a major concern to food production in Ghana, this study seeks to show the relationship between the production of major crops and rainfall distribution pattern in the Worobong Agroecological Area (WAA) relative to food security in the face of climate change. The study analysed the variability in local rainfall data, examining the interseasonal (main and minor) rainfall distribution using the precipitation concentration index (PCI), and determined the pattern, availability of water, and the strength of correlation with crop production in the WAA. Data from the Ghana Meteorological Agency (GMet) spanning a 30-year period and grouped into 3 decades of 10 years each was used. Selected crop data for 1993-2014 was also obtained from the Ministry of Food and Agriculture’s District office and analyzed for trends in crop yield over the period and established relationship between the crop data and the rainfall data. Part of the result revealed that rainfall variability within the major seasons in the 3 groups was lower than the minor seasons. It further showed that yields of three crops have declined over the period. Among the strategies to sustain crop production is to make the findings serve as useful reference to inform discussions and policy on adaptive agricultural production methodologies for the area in the face of changing climate.


2016 ◽  
Vol 8 (2) ◽  
pp. 293-302 ◽  
Author(s):  
Zhang Zhou ◽  
Ying Ouyang ◽  
Zhijun Qiu ◽  
Guangyi Zhou ◽  
Mingxian Lin ◽  
...  

Stream low flow estimates are central to assessing climate change impact, water resource management, and ecosystem restoration. This study investigated the impacts of climate change upon stream low flows from a rainforest watershed in Jianfengling (JFL) Mountain, Hainan Island, China, using the low flow selection method as well as the frequency and probability analysis technique. Results showed that low flow at this watershed over a period of 18 years (1990–2007) was 0.58 m3/s and its recurrence probability and recurrence interval were, respectively, 99% and 1.01 years for low flow with a 60-day duration. Low flow rate decreased linearly both as time increment elapsed (R2 = 0.62, p < 0.01) and as air temperature rose (R2 = 0.60, p < 0.05), whereas the recurrence intervals of low flow were shorter (or occurred more frequently) as time increment elapsed. In contrast, no correlation existed between annual rainfall and low flow for this watershed, indicating that rainfall was not a factor influencing stream low flows. Since there were little to no anthropogenic activities rather than air temperature rise over time at this watershed, we attributed the decreased rate and frequent occurrence of low flow to the warming air temperature as time elapsed.


Sign in / Sign up

Export Citation Format

Share Document