scholarly journals Likely Ranges of Climate Change in Bolivia

2013 ◽  
Vol 52 (6) ◽  
pp. 1303-1317 ◽  
Author(s):  
Christian Seiler ◽  
Ronald W. A. Hutjes ◽  
Pavel Kabat

AbstractBolivia is facing numerous climate-related threats, ranging from water scarcity due to rapidly retreating glaciers in the Andes to a partial loss of the Amazon forest in the lowlands. To assess what changes in climate may be expected in the future, 35 global circulation models (GCMs) from the third and fifth phases of the Coupled Model Intercomparison Project (CMIP3/5) were analyzed for the Bolivian case. GCMs were validated against observed surface air temperature, precipitation, and incoming shortwave (SW) radiation for the period 1961–90. Weighted ensembles were developed, and climate change projections for five emission scenarios were assessed for 2070–99. GCMs revealed an overall cold, wet, and positive-SW-radiation bias and showed no substantial improvement from the CMIP3 to the CMIP5 ensemble for the Bolivian case. Models projected an increase in temperature (2.5°–5.9°C) and SW radiation (1%–5%), with seasonal and regional differences. In the lowlands, changes in annual rainfall remained uncertain for CMIP3 whereas CMIP5 GCMs were more inclined to project decreases (−9%). This pattern also applied to most of the Amazon basin, suggesting a higher risk of partial biomass loss for the CMIP5 ensemble. Both ensembles agreed on less rainfall (−19%) during drier months (June–August and September–November), with significant changes in interannual rainfall variability, but disagreed on changes during wetter months (January–March). In the Andes, CMIP3 GCMs tended toward less rainfall (−9%) whereas CMIP5 tended toward more (+20%) rainfall during parts of the wet season. The findings presented here may provide inputs for studies of climate change impact that assess how resilient human and natural systems are under different climate change scenarios.

2015 ◽  
Vol 29 (1) ◽  
pp. 3-15 ◽  
Author(s):  
Stephen P. Good ◽  
Kaiyu Guan ◽  
Kelly K. Caylor

Abstract Interannual variation in precipitation totals is a critical factor governing the year-to-year availability of water resources, yet the connection between interannual precipitation variability and underlying event- and season-scale precipitation variability remains unclear. In this study, tropical and midlatitude precipitation characteristics derived from extensive station records and high-frequency satellite observations were analyzed to attribute the fraction of interannual variability arising as a result of individual variability in precipitation event intensity, frequency, and seasonality, as well as the cross-correlation between these factors at the global scale. This analysis demonstrates that variability in the length of the wet season is the most important factor globally, causing 52% of the total interannual variability, while variation in the intensity of individual rainfall events contributes 31% and variability in interstorm wait times contributes only 17%. Spatial patterns in the contribution of each of these intra-annual rainfall characteristics are informative, with regions such as Indonesia and southwestern North America primarily influenced by seasonality, while regions such as the eastern United States, central Africa, and the upper Amazon basin are strongly influenced by storm intensity and frequency. A robust cross-correlation between climate characteristics is identified in the equatorial Pacific, revealing an increased interannual variability over what is expected based on the variability of individual events. This decomposition of interannual variability identifies those regions where accurate representation of daily and seasonal rainfall statistics is necessary to understand and correctly model rainfall variability at longer time scales.


2019 ◽  
Author(s):  
Jörg Matschullat ◽  
Roberval Monteiro Bezerra de Lima ◽  
Sophie F. von Fromm ◽  
Solveig Pospiech ◽  
Andrea M. Ramos ◽  
...  

Abstract. Given the dimensions of the Amazon basin (7.5 million km2), its internal dynamics, increasing anthropogenic strain on this large biome, and its global role as one of two continental biospheric tipping elements, it appears crucial to have data-based knowledge on carbon and nitrogen concentrations and pools as well as on possible intra-annual dynamics. We quantified carbon (Ct, Corg), nitrogen (N) and sulfur (S) concentrations in litter (ORG) and mineral soil material (TOP 0–20 cm, BOT 30–50 cm) of upland (terra firme) oxisols across Amazonas state and present a first pool calculation. Data are based on triplicate seasonal sampling at 29 sites (forest and post-forest) within the binational project EcoRespira-Amazon (ERA). Repeated sampling increased data accuracy and allows for interpreting intra-annual (seasonal) and climate-change related dynamics. Extreme conditions between the dry season in 2016 and the subsequent wet season (ENSO-related) show differences more clearly. Median CNS in the Amazon basin TOP soils (Ct 1.9, Corg 1.6, N 0.15, S 0.03 wt-% under forest canopy) as well as Corg / N ratios show concentrations similar to European soils (FOREGS, GEMAS). TOP Ct concentrations ranged from 1.02 to 3.29 wt-% (medianForest 2.17 wt-%; medianPost-Forest 1.75 wt-%), N from 0.088 to 0.233 wt-% (medianForest 0.17 wt-%; medianPost-Forest 0.09 wt-%) and S from 0.012 to 0.051 wt.-% (medianForest 0.03 wt.-%; medianPost-Forest 0.02 wt-%). Corg / N ratios ranged from 6 to 14 (median 10). A first pool calculation (hectare-based) illustrates forest versus post-forest changes. The elements are unevenly distributed in the basin with generally higher CNS values in the central part (Amazonas graben) as compared to the southern part of the basin. Deforestation and drought conditions lead to C and N losses – within 50 years after deforestation, C and N losses average 10 to 15 %. Regional climate change with increased drought will likely speed up carbon and nitrogen losses.


2021 ◽  
Vol 2 (1) ◽  
Author(s):  
Beatriz Fátima Alves de Oliveira ◽  
Marcus J. Bottino ◽  
Paulo Nobre ◽  
Carlos A. Nobre

AbstractLand use change and deforestation can influence local temperature and climate. Here we use a coupled ocean-atmosphere model to assess the impact of savannization of the Amazon Basin on the wet-bulb globe temperature heat stress index under two climate change scenarios (RCP4.5 and RCP8.5). We find that heat stress exposure due to deforestation was comparable to the effect of climate change under RCP8.5. Our findings suggest that heat stress index could exceed the human adaptation limit by 2100 under the combined effects of Amazon savannization and climate change. Moreover, we find that risk of heat stress exposure was highest in Northern Brazil and among the most socially vulnerable. We suggest that by 2100, savannization of the Amazon will lead to more than 11 million people will be exposed heat stress that poses an extreme risk to human health under a high emission scenario.


2021 ◽  
Vol 893 (1) ◽  
pp. 012006
Author(s):  
F Aditya ◽  
E Gusmayanti ◽  
J Sudrajat

Abstract Climate change has been a prominent issue in the last decade. Climate change on a global scale does not necessarily have the same effect in different regions. Rainfall is a crucial weather element related to climate change. Rainfall trends analysis is an appropriate step in assessing the impact of climate change on water availability and food security. This study examines rainfall variations and changes at West Kalimantan, focusing on Mempawah and Kubu Raya from 2000-2019. The Mann-Kendall (MK) and Sen's Slope estimator test, which can determine rainfall variability and long-term monotonic trends, were utilized to analyze 12 rainfall stations. The findings revealed that the annual rainfall pattern prevailed in all locations. Mempawah region tends to experience a downward trend, while Kubu Raya had an upward trend. However, a significant trend (at 95% confidence level) was identified in Sungai Kunyit with a slope value of -33.20 mm/year. This trend indicates that Sungai Kunyit will become drier in the future. The results of monthly rainfall analysis showed that significant upward and downward trends were detected in eight locations. Rainfall trends indicate that climate change has occurred in this region.


Author(s):  
Yar M. Taraky ◽  
Yongbo Liu ◽  
Bahram Gharabaghi ◽  
Edward McBean ◽  
Prasad Daggupati ◽  
...  

While climate change impacts vary globally, for the Kabul River Basin (KRB), concerns are primarily associated with frequent flooding. This research describes the influence of headwater reservoirs on projections of climate change impacts and flood frequency, and how the riparian countries can benefit from storing of floodwaters for use during dry seasons. Six climate change scenarios and two Representative Concentration Pathways (RCPs) are used in three periods of a quarter-century each. The Soil and Water Assessment Tool (SWAT) is used to assess how the proposed reservoirs will reduce flooding by ~38% during the wet season, reduce the flood frequency from five to 25 years return period, and increase low flows by ~110% during the dry season, which reflect an ~17.5% reduction in the glacier-covered area by the end of the century. The risks and benefits of reservoirs are highlighted in light of the developmental goals of Afghanistan and Pakistan.


2020 ◽  
Vol 13 (4) ◽  
pp. 470-477
Author(s):  
Alexander Zogas ◽  
Evsey Kosman ◽  
Marcelo Sternberg

Abstract Aims Climate change in the eastern Mediterranean region will have a strong impact on ecosystem functioning and plant community dynamics due to a reduction in annual rainfall and increased variability. We aim to understand the role of seed banks as potential buffers against climatic uncertainty determined by climate change. Methods We examined germination strategies of 18 common species present along an aridity gradient. Data were obtained from soil seed banks germinated during nine consecutive years from arid, semi-arid, Mediterranean and mesic Mediterranean ecosystems. At the semi-arid and Mediterranean sites, rainfall manipulations simulating 30% drought and 30% rainfall increase were applied. Germination strategies were tested under optimal irrigation conditions during three consecutive germination seasons to determine overall seed germinability in each soil sample. Changes in germination strategy were examined using a novel statistical approach that considers the climatic and biotic factors that may affect seed germinability. Important Findings The results showed that dominant species controlled their germination fractions by producing seeds with a different yearly germination fraction probability. The amount of rainfall under which the seeds were produced led to two major seed types with respect to germinability: high germinability, seeds leading to transient seed banks, and low germinability, seeds leading to persistent seed banks. We conclude that differential seed production among wet and dry years of both seed types creates a stable balance along the aridity gradient, enabling the soil seed bank to serve as a stabilizing mechanism buffering against rainfall unpredictability. Additionally, we present a general model of germination strategies of dominant annual species in Mediterranean and arid ecosystems that strengthens the notion of soil seed banks as buffers against climatic uncertainty induced by climate change in the region.


AoB Plants ◽  
2020 ◽  
Vol 12 (2) ◽  
Author(s):  
Efthalia Stathi ◽  
Konstantinos Kougioumoutzis ◽  
Eleni M Abraham ◽  
Panayiotis Trigas ◽  
Ioannis Ganopoulos ◽  
...  

Abstract The Mediterranean hot spot includes numerous endemic and socio-economically important plant species seriously threatened by climate change and habitat loss. In this study, the genetic diversity of five populations of Cicer graecum, an endangered endemic species from northern Peloponnisos, Greece and a wild relative of the cultivated Cicer arietinum, was investigated using inter-simple sequence repeats (ISSRs) and amplified fragment length polymorphism (AFLP) markers in order to determine levels and structure of genetic variability. Nei’s gene diversity by ISSR and AFLP markers indicated medium to high genetic diversity at the population level. Moreover, AMOVA results suggest that most of the variation exists within (93 % for AFLPs and 65 % for ISSRs), rather than among populations. Furthermore, Principal Component Analysis based on ISSRs positively correlated the genetic differentiation among the populations to the geographic distances, suggesting that the gene flow among distant populations is limited. The ecological adaptation of C. graecum populations was also investigated by correlation of their genetic diversity with certain environmental variables. Aridity arose as the dominant factor positively affecting the genetic diversity of C. graecum populations. We modelled the realized climatic niche of C. graecum in an ensemble forecasting scheme under three different global circulation models and two climate change scenarios. In all cases, a severe range contraction for C. graecum is projected, highlighting the high extinction risk that is probably going to face during the coming decades. These results could be a valuable tool towards the implementation of an integrated in situ and ex situ conservation scheme approach for activating management programmes for this endemic and threatened species.


2016 ◽  
Vol 4 (3) ◽  
pp. 13 ◽  
Author(s):  
Touré Halimatou ◽  
Zampaligre Nouhoun ◽  
Traoré Kalifa ◽  
Kyei-Baffour Nicholas

Several studies predict that climate change will highly affect the African continent. These changes in climate and climate variability may be challenging issues for future economic development of the continent in general, and particularly in the region of sub Saharan Africa. Offering a case study of Sahelian zone of Mali in the present study aimed to understand farmers’ perceptions of climate variability and change and to evaluate adaptation options used by farmers in the Cinzana commune of Mali. One hundred and nineteen farmers were interviewed using a questionnaire designed with six sections. The result showed that all farmers interviewed were aware of climate change and climate variability. The Farmers perceived a decrease in annual rainfall variability and an increase of temperature as main factors of climate change and climate variability. The observed meteorological data, showed a decrease of precipitation distribution during the last 14 years of which was observed by farmers. Several strategies such as selling animals, use of improved crop varieties, new activities (outside agriculture) and credit were the commonly preferred adaptation strategies to deal with climate change and variability. Factors surveyed, age, gender, education, household size, farm size were found to be significantly correlated to self-reported to adaptation.


2019 ◽  
Vol 11 (4) ◽  
pp. 1724-1747 ◽  
Author(s):  
M. Allani ◽  
R. Mezzi ◽  
A. Zouabi ◽  
R. Béji ◽  
F. Joumade-Mansouri ◽  
...  

Abstract This study evaluates the impacts of climate change on water supply and demand of the Nebhana dam system. Future climate change scenarios were obtained from five general circulation models (GCMs) of CMIP5 under RCP 4.5 and 8.5 emission scenarios for the time periods, 2021–2040, 2041–2060 and 2061–2080. Statistical downscaling was applied using LARS-WG. The GR2M hydrological model was calibrated, validated and used as input to the WEAP model to assess future water availability. Expected crop growth cycle lengths were estimated using a growing degree days model. By means of the WEAP-MABIA method, projected crop and irrigation water requirements were estimated. Results show an average increase in annual ETo of 6.1% and a decrease in annual rainfall of 11.4%, leading to a 24% decrease in inflow. Also, crops' growing cycles will decrease from 5.4% for wheat to 31% for citrus trees. The same tendency is observed for ETc. Concerning irrigation requirement, variations are more moderated depending on RCPs and time periods, and is explained by rainfall and crop cycle duration variations. As for demand and supply, results currently show that supply does not meet the system demand. Climate change could worsen the situation unless better planning of water surface use is done.


2016 ◽  
Vol 154 (7) ◽  
pp. 1153-1170 ◽  
Author(s):  
E. EBRAHIMI ◽  
A. M. MANSCHADI ◽  
R. W. NEUGSCHWANDTNER ◽  
J EITZINGER ◽  
S. THALER ◽  
...  

SUMMARYClimate change is expected to affect optimum agricultural management practices for autumn-sown wheat, especially those related to sowing date and nitrogen (N) fertilization. To assess the direction and quantity of these changes for an important production region in eastern Austria, the agricultural production systems simulator was parameterized, evaluated and subsequently used to predict yield production and grain protein content under current and future conditions. Besides a baseline climate (BL, 1981–2010), climate change scenarios for the period 2035–65 were derived from three Global Circulation Models (GCMs), namely CGMR, IPCM4 and MPEH5, with two emission scenarios, A1B and B1. Crop management scenarios included a combination of three sowing dates (20 September, 20 October, 20 November) with four N fertilizer application rates (60, 120, 160, 200 kg/ha). Each management scenario was run for 100 years of stochastically generated daily weather data. The model satisfactorily simulated productivity as well as water and N use of autumn- and spring-sown wheat crops grown under different N supply levels in the 2010/11 and 2011/12 experimental seasons. Simulated wheat yields under climate change scenarios varied substantially among the three GCMs. While wheat yields for the CGMR model increased slightly above the BL scenario, under IPCM4 projections they were reduced by 29 and 32% with low or high emissions, respectively. Wheat protein appears to increase with highest increments in the climate scenarios causing the largest reductions in grain yield (IPCM4 and MPEH-A1B). Under future climatic conditions, maximum wheat yields were predicted for early sowing (September 20) with 160 kg N/ha applied at earlier dates than the current practice.


Sign in / Sign up

Export Citation Format

Share Document