scholarly journals Stormwater quality modeling in urbanized areas

2018 ◽  
Vol 45 ◽  
pp. 00104 ◽  
Author(s):  
Marek Zawilski ◽  
Błażej Dziedziela

Stormwater quality modeling with the use of Stormwater Management Model (SWMM) is presented. The model has been calibrated on the basis of measurements of flow and stormwater quality performed on a real catchment in Łódź, Poland. Calibrated model parameters and the correlations between the quality indexes are given. This will allow application of the model to other urban catchments equipped with storm drainage systems.

Hydrology ◽  
2021 ◽  
Vol 8 (1) ◽  
pp. 12
Author(s):  
Ronja Iffland ◽  
Kristian Förster ◽  
Daniel Westerholt ◽  
María Herminia Pesci ◽  
Gilbert Lösken

In increasingly expanding cities, roofs are still largely unused areas to counteract the negative impacts of urbanization on the water balance and to reduce flooding. To estimate the effect of green roofs as a sustainable low impact development (LID) technique on the building scale, different approaches to predict the runoff are carried out. In hydrological modelling, representing vegetation feedback on evapotranspiration (ET) is still considered challenging. In this research article, the focus is on improving the representation of the coupled soil–vegetation system of green roofs. Relevant data to calibrate and validate model representations were obtained from an existing field campaign comprising several green roof test plots with different characteristics. A coupled model, utilizing both the Penman–Monteith equation to estimate ET and the software EPA stormwater management model (SWMM) to calculate the runoff, was set up. Through the application of an automatic calibration procedure, we demonstrate that this coupled modelling approach (Kling–Gupta efficiency KGE = 0.88) outperforms the standard ET representation in EPA SWMM (KGE = −0.35), whilst providing a consistent and robust parameter set across all green roof configurations. Moreover, through a global sensitivity analysis, the impact of changes in model parameters was quantified in order to aid modelers in simplifying their parameterization of EPA SWMM. Finally, an improved model using the Penman–Monteith equation and various recommendations are presented.


2014 ◽  
Vol 70 (5) ◽  
pp. 858-864 ◽  
Author(s):  
Haijun Yu ◽  
Guoru Huang ◽  
Chuanhao Wu

The stormwater management model (SWMM) was adapted and calibrated to Jinan, a typical piedmont city in China, to verify the large-scale applicability of the model to piedmont cities. Fourteen storms were used for model calibration and validation. The calibrated model predicted the measured data with satisfactory accuracy and reliability. A sensitivity analysis was then conducted to evaluate the impact of the model parameters; it showed that: (1) the model outputs were most sensitive to imperviousness and conduit roughness; and (2) infiltration parameters and depression storage play an important role in total runoff and peak flow. The urban drainage system of Jinan was assessed using urban design storms with the calibrated model, and the effects of engineered flood control measures were evaluated. The overall results demonstrate that SWMM is applicable on a large scale to piedmont cities.


2020 ◽  
Vol 20 (2) ◽  
pp. 229-238 ◽  
Author(s):  
Yonggil Jeong ◽  
Taeuk Kang

In this study, we developed a program for detention pond sizing based on Excel in order to improve user convenience. The program includes a function for the derivation of flood hydrograph that was embodied by using the rational method hydrograph for connecting the design of the stormwater pipe. The design method of a permeable detention pond that is a kind of low impact development (LID) technique was also implemented. In addition, the operation of the program was found to be stable, and various discharge structures such as weir, pump, and pipe could be easily conducted using the engine of the stormwater management model (SWMM). The developed detention pond sizing program was applied to the actual design. Subsequently, similar results were derived by comparing with the actual design, and it was found that the program was appropriate.


2015 ◽  
Vol 72 (10) ◽  
pp. 1747-1753 ◽  
Author(s):  
J. A. S. Tobio ◽  
M. C. Maniquiz-Redillas ◽  
L. H. Kim

The study presented the application of Stormwater Management Model (SWMM) in determining the optimal physical design properties of an established low impact development (LID) system treating road runoff. The calibration of the model was based on monitored storm events occurring from May 2010 to July 2013. It was found that the total suspended solids was highly correlated with stormwater runoff volume and dominant heavy metal constituents in stormwater runoff, such lead, zinc and copper, with a Pearson correlation coefficient ranging from 0.88 to 0.95 (P < 0.05). Reducing the original ratio of the storage volume to surface area (SV/SA) of the facility and depth by 25% could match the satisfactory performance efficiency achieved in the original design. The smaller SV/SA and depth would mean a less costly system, signifying the importance of optimization in designing LID systems.


Sign in / Sign up

Export Citation Format

Share Document