scholarly journals Program Development for Detention Pond Sizing Based on Excel Using SWMM Engine

2020 ◽  
Vol 20 (2) ◽  
pp. 229-238 ◽  
Author(s):  
Yonggil Jeong ◽  
Taeuk Kang

In this study, we developed a program for detention pond sizing based on Excel in order to improve user convenience. The program includes a function for the derivation of flood hydrograph that was embodied by using the rational method hydrograph for connecting the design of the stormwater pipe. The design method of a permeable detention pond that is a kind of low impact development (LID) technique was also implemented. In addition, the operation of the program was found to be stable, and various discharge structures such as weir, pump, and pipe could be easily conducted using the engine of the stormwater management model (SWMM). The developed detention pond sizing program was applied to the actual design. Subsequently, similar results were derived by comparing with the actual design, and it was found that the program was appropriate.

2015 ◽  
Vol 72 (10) ◽  
pp. 1747-1753 ◽  
Author(s):  
J. A. S. Tobio ◽  
M. C. Maniquiz-Redillas ◽  
L. H. Kim

The study presented the application of Stormwater Management Model (SWMM) in determining the optimal physical design properties of an established low impact development (LID) system treating road runoff. The calibration of the model was based on monitored storm events occurring from May 2010 to July 2013. It was found that the total suspended solids was highly correlated with stormwater runoff volume and dominant heavy metal constituents in stormwater runoff, such lead, zinc and copper, with a Pearson correlation coefficient ranging from 0.88 to 0.95 (P < 0.05). Reducing the original ratio of the storage volume to surface area (SV/SA) of the facility and depth by 25% could match the satisfactory performance efficiency achieved in the original design. The smaller SV/SA and depth would mean a less costly system, signifying the importance of optimization in designing LID systems.


Hydrology ◽  
2021 ◽  
Vol 8 (1) ◽  
pp. 12
Author(s):  
Ronja Iffland ◽  
Kristian Förster ◽  
Daniel Westerholt ◽  
María Herminia Pesci ◽  
Gilbert Lösken

In increasingly expanding cities, roofs are still largely unused areas to counteract the negative impacts of urbanization on the water balance and to reduce flooding. To estimate the effect of green roofs as a sustainable low impact development (LID) technique on the building scale, different approaches to predict the runoff are carried out. In hydrological modelling, representing vegetation feedback on evapotranspiration (ET) is still considered challenging. In this research article, the focus is on improving the representation of the coupled soil–vegetation system of green roofs. Relevant data to calibrate and validate model representations were obtained from an existing field campaign comprising several green roof test plots with different characteristics. A coupled model, utilizing both the Penman–Monteith equation to estimate ET and the software EPA stormwater management model (SWMM) to calculate the runoff, was set up. Through the application of an automatic calibration procedure, we demonstrate that this coupled modelling approach (Kling–Gupta efficiency KGE = 0.88) outperforms the standard ET representation in EPA SWMM (KGE = −0.35), whilst providing a consistent and robust parameter set across all green roof configurations. Moreover, through a global sensitivity analysis, the impact of changes in model parameters was quantified in order to aid modelers in simplifying their parameterization of EPA SWMM. Finally, an improved model using the Penman–Monteith equation and various recommendations are presented.


Author(s):  
Jing Peng ◽  
Jiayi Ouyang ◽  
Lei Yu

Abstract A sponge airport is a new concept of airport stormwater management, which can effectively relieve airport flooding and promote the usage of rainwater resources, often including the application of low impact development (LID) facilities. Although many airports in China have been chosen to implement sponge airport construction, there is a lack of quantitative evaluation on the effect of LID facilities. This paper takes Beijing Daxing International Airport as a case study and develops a comprehensive evaluation on the effect of LID facilities using the storm water management model (SWMM). The performance of four LID design scenarios with different locations and sizes of the rain barrel, the vegetative swale, the green roof, and the storage tank were analyzed. After LID, the water depth of J7 reduces from 0.6 m to 0.2 m, and duration of accumulated water reduces from 5 hours to 2.5 hours. The water depth of J17 reduces from 0.5 m to 0.1 m, and duration of accumulated water reduces from 2 hours to 15 minutes. The capacity of conduits has been greatly improved (Link 7 and Link 17). The application of LID facilities greatly improves rainwater removal capacity and effectively alleviates the waterlogging risk in the study area.


2018 ◽  
Vol 45 ◽  
pp. 00104 ◽  
Author(s):  
Marek Zawilski ◽  
Błażej Dziedziela

Stormwater quality modeling with the use of Stormwater Management Model (SWMM) is presented. The model has been calibrated on the basis of measurements of flow and stormwater quality performed on a real catchment in Łódź, Poland. Calibrated model parameters and the correlations between the quality indexes are given. This will allow application of the model to other urban catchments equipped with storm drainage systems.


Author(s):  
Byunhyun Kim ◽  
Brett F. Sanders ◽  
Kunyeun Han ◽  
Youngjoo Kim ◽  
James S. Famiglietti

Sign in / Sign up

Export Citation Format

Share Document