scholarly journals The operation and capacity fade modelling of the lithium-ion cell for electric vehicles

2019 ◽  
Vol 108 ◽  
pp. 01017
Author(s):  
Damian Burzyński ◽  
Leszek Kasprzyk

The paper deals with the issues related to the operation and capacity fade modelling of lithium-ion cells. It includes the presentation of the electrochemical model of the cell in which the phenomenon of diffusion and transfer of charge on electrodes and in electrolyte was discussed. The circuit model of the cell designed for analysis of its behaviour in the conditions of the dynamically variable load was presented. The key aging processes which occur during the operation of the cells were characterised, and their impact on the wear of the cell was discussed. The model of the capacity fade of the lithium-nickel-manganese-cobalt cell was developed. The model parameters depends on the ambient temperature, the value of load current and the value of the average charge current. The results of the model were verified with the laboratory measurement.

Author(s):  
Alana Aragon Zulke ◽  
Ivan Korotkin ◽  
Jamie M. Foster ◽  
Mangayarkarasi Nagarathinam ◽  
Harry Hoster ◽  
...  

Abstract We demonstrate the predictive power of a parametrised Doyle-Fuller-Newman (DFN) model of a commercial cylindrical (21700) lithium-ion cell with NCA/Gr-SiOx chemistry. Model parameters result from the deconstruction of a fresh commercial cell to determine/confirm chemistry and microstructure, and also from electrochemical experiments with half-cells built from electrode samples. The simulations predict voltage proles for (i) galvanostatic discharge and (ii) drive-cycles. Predicted voltage responses deviate from measured ones by <1% throughout at least 95% of a full galvanostatic discharge, whilst the drive cycle discharge is matched to a 1-3% error throughout. All simulations are performed using the online computational tool DandeLiion, which rapidly solves the DFN model using only modest computational resource. The DFN results are used to quantify the irreversible energy losses occurring in the cell and deduce their location. In addition to demonstrating the predictive power of a properly validated DFN model, this work provides a novel simplifed parametrisation work that can be used to accurately calibrate an electrochemical model of a cell.


Author(s):  
Amy Bohinsky ◽  
Sobana P. Rangarajan ◽  
Yevgen Barsukov ◽  
Partha Mukherjee

Fast charging of lithium-ion cells is key to alleviate range anxiety and improve the commercial viability of electric vehicles, which is, however, limited by the propensity of lithium plating. The...


Modelling ◽  
2021 ◽  
Vol 2 (2) ◽  
pp. 259-287
Author(s):  
Robert Franke-Lang ◽  
Julia Kowal

The electrification of the powertrain requires enhanced performance of lithium-ion batteries, mainly in terms of energy and power density. They can be improved by optimising the positive electrode, i.e., by changing their size, composition or morphology. Thick electrodes increase the gravimetric energy density but generally have an inefficient performance. This work presents a 2D modelling approach for better understanding the design parameters of a thick LiFePO4 electrode based on the P2D model and discusses it with common literature values. With a superior macrostructure providing a vertical transport channel for lithium ions, a simple approach could be developed to find the best electrode structure in terms of macro- and microstructure for currents up to 4C. The thicker the electrode, the more important are the direct and valid transport paths within the entire porous electrode structure. On a smaller scale, particle size, binder content, porosity and tortuosity were identified as very impactful parameters, and they can all be attributed to the microstructure. Both in modelling and electrode optimisation of lithium-ion batteries, knowledge of the real microstructure is essential as the cross-validation of a cellular and lamellar freeze-casted electrode has shown. A procedure was presented that uses the parametric study when few model parameters are known.


Author(s):  
K. N. Radhakrishnan ◽  
T. Coupar ◽  
D. J. Nelson ◽  
M. W. Ellis

The effect of the charge/discharge profile on battery durability is a critical factor for the application of batteries and for the design of appropriate battery testing protocols. In this work, commercial high-power prismatic lithium ion cells for hybrid electric vehicles (HEVs) were cycled using a pulse-heavy profile and a simple square-wave profile to investigate the effect of cycle profile on battery durability. The pulse-heavy profile was designed to simulate on-road conditions for a typical HEV, while the simplified square-wave profile was designed to have the same total charge throughput, but with lower peak currents. The 5 Ah batteries were cycled for 100 kAh with periodic performance tests to monitor the state of the batteries. Results indicate that, for the batteries tested, the capacity fade for the two profiles was very similar and was 11±0.5% compared to beginning of life (BOL). The change in internal resistance of the batteries during testing was also monitored and found to increase 21% and 12% compared to BOL for the pulse-heavy and square-wave profiles, respectively. The results suggest that simplified testing protocols using square-wave cycling may provide adequate insight into capacity fade behavior for more complex hybrid vehicle drive cycles.


Author(s):  
Tanvir R. Tanim ◽  
Christopher D. Rahn ◽  
Chao-Yang Wang

Low-order, explicit models of lithium ion cells are critical for real-time battery management system (BMS) applications. This paper presents a seventh-order, electrolyte enhanced single particle model (ESPM) with electrolyte diffusion and temperature dependent parameters (ESPM-T). The impedance transfer function coefficients are explicit in terms of the model parameters, simplifying the implementation of temperature dependence. The ESPM-T model is compared with a commercially available finite volume based model and results show accurate matching of pulse responses over a wide range of temperature (T) and C-rates (I). The voltage response to 30 s pulse charge–discharge current inputs is within 5% of the commercial code for 25 °C<T<50 °C at I≤12.5C and -10 °C<T<50°C at I≤1C for a graphite/nickel cobalt manganese (NCM) lithium ion cell.


Sign in / Sign up

Export Citation Format

Share Document