scholarly journals Influence of the surroundings areas in the microclimates of Santo André City – Brazil and Indication of Bioclimatic Strategies for Buildings

2019 ◽  
Vol 111 ◽  
pp. 06005
Author(s):  
Helenice Maria Sacht ◽  
Andréa de Oliveira Cardoso ◽  
Victor Figueiredo Roriz

The characterization of the climate of Santo André and its weather data are essential instruments for the study of implantation, both of new buildings and solutions of retrofit, as well as for the elaboration of projects of urban interventions or degraded areas occupation. In this study, meteorological weather data were obtained by meteorological stations in Santo André, a municipality located in the region of ABC Paulista (São Paulo State), for five different points of the city in order to evaluate the different micro climates and the influence of the surroundings in microclimates and an climate file in .epw format was developed for analysed bioclimatic strategies for buildings. Results show temperature and humidity variations among the five microclimates analyzed, as a consequence of the following actions: replacement of vegetation by constructions, asphalt, concrete and other impermeable surfaces, increased air pollution which cause a great absorption of solar radiation, forming a barrier for air circulation and of pollutant gases into the atmosphere creating urban heat island effects.

2019 ◽  
Vol 23 (Suppl. 4) ◽  
pp. 1035-1042 ◽  
Author(s):  
Andrea Vallati ◽  
Luca Mauri ◽  
Chiara Colucci

Urban heat island has significant impacts on buildings? energy consumption. The phenomenon is associated with increased urban air temperatures compared to the air temperature of the surrounding rural or suburban areas. The ambient air temperature growth due to climate changes and the urban heat island phenomenon are dramatically increasing the cooling demand in buildings. This is worsened by irradiation conditions, construction technologies, and subjective comfort expectations. This paper examines the impact of the urban environment on the energy demand of buildings, considering the case of two districts of the city of Rome, Italy: one is representative of a central zone, the other of a rural zone. Weather data were then used to calculate the thermal demand of a typical Italian building, ideally located in the monitored areas of the city. Standalone building with modified weather file was modeled in TRNSYS. Results show that urban heat island intensity causes an increase in cooling demand up to +33% for the urban area (+20% for the rural area) compared to the demand calculated using weather data from airportual areas. On the other hand, urban heat island intensity has a positive effect on heating demand which turns out to decrease up to -32% for the urban area (-14% for the rural area).


Author(s):  
Hildreth Jadira Villamil-Almeida ◽  
Kevin Andrés Blanco-Mantilla ◽  
Oscar Yazit Salah-García ◽  
Carlos Eduardo García Sánchez

One of the meteorological effects in cities is the increase in local temperature, which is known as urban heat island (UHI). The objective of this study was to detect and quantify the possible UHI in the city of Bucaramanga, Colombia. For this purpose, a real-time temperature measurement network was installed, composed of seven nodes, used to obtain temperature values every minute. Six of the nodes were located in different positions in the city, and the remaining one was used to give the reference measurement. The data collected were processed for elimination of outliers, management of missing data and noise filtering. Analysis of the data allowed detecting differences in the diurnal and nocturnal UHI intensity trends. It was concluded that the UHI intensity during the day varies depending on the Local Climate Zone that represents the location, while the UHI intensity value at night is quite uniform across the city, with a mean value of 1.0 °C. It was also possible to conclude that the magnitude of the daytime UHI is lower in the dry season.


2018 ◽  
Vol 7 (3.2) ◽  
pp. 597
Author(s):  
Yuri Golik ◽  
Oksana Illiash ◽  
Nataliia Maksiuta

The concept of "heat-island effect", its structure and features of formation over the city are given. The climatic and other features of the city that influence the formation of this phenomenon are mentioned.  The data on functioning in the city of the municipal production enterprise of the heat economy is indicated. The traditional method for determining the formation of the urban "heat-island effect" is described. The data and comparative graphs on the temperature regimes of the city and region are presented. The possibility of influencing architectural features of the city on the formation of the "heat-island-effect" is determined. According to the obtained results, further integrated researches are proposed for obtaining reliable results of the given question. 


2021 ◽  
Author(s):  
Shihan Chen ◽  
Yuanjian Yang ◽  
Fei Deng ◽  
Yanhao Zhang ◽  
Duanyang Liu ◽  
...  

Abstract. Due to rapid urbanization and intense human activities, the urban heat island (UHI) effect has become a more concerning climatic and environmental issue. A high spatial resolution canopy UHI monitoring method would help better understand the urban thermal environment. Taking the city of Nanjing in China as an example, we propose a method for evaluating canopy UHI intensity (CUHII) at high resolution by using remote sensing data and machine learning with a Random Forest (RF) model. Firstly, the observed environmental parameters [e.g., surface albedo, land use/land cover, impervious surface, and anthropogenic heat flux (AHF)] around densely distributed meteorological stations were extracted from satellite images. These parameters were used as independent variables to construct an RF model for predicting air temperature. The correlation coefficient between the predicted and observed air temperature in the test set was 0.73, and the average root-mean-square error was 0.72 °C. Then, the spatial distribution of CUHII was evaluated at 30-m resolution based on the output of the RF model. We found that wind speed was negatively correlated with CUHII, and wind direction was strongly correlated with the CUHII offset direction. The CUHII reduced with the distance to the city center, due to the de-creasing proportion of built-up areas and reduced AHF in the same direction. The RF model framework developed for real-time monitoring and assessment of high-resolution CUHII provides scientific support for studying the changes and causes of CUHII, as well as the spatial pattern of urban thermal environments.


2021 ◽  
Vol 13 (17) ◽  
pp. 9617 ◽  
Author(s):  
Wesam M. Elbardisy ◽  
Mohamed A. Salheen ◽  
Mohammed Fahmy

In the Middle East and North Africa (MENA) region, studies focused on the relationship between urban planning practice and climatology are still lacking, despite the fact that the latter has nearly three decades of literature in the region and the former has much more. However, such an unfounded relationship that would consider urban sustainability measures is a serious challenge, especially considering the effects of climate change. The Greater Cairo Region (GCR) has recently witnessed numerous serious urban vehicular network re-development, leaving the city less green and in need of strategically re-thinking the plan regarding, and the role of, green infrastructure. Therefore, this study focuses on approaches to the optimization of the urban green infrastructure, in order to reduce solar irradiance in the city and, thus, its effects on the urban climatology. This is carried out by studying one of the East Cairo neighborhoods, named El-Nozha district, as a representative case of the most impacted neighborhoods. In an attempt to quantify these effects, using parametric simulation, the Air Temperature (Ta), Mean Radiant Temperature (Tmrt), Relative Humidity (RH), and Physiological Equivalent Temperature (PET) parameters were calculated before and after introducing urban trees, acting as green infrastructure types that mitigate climate change and the Urban Heat Island (UHI) effect. Our results indicate that an optimized percentage, spacing, location, and arrangement of urban tree canopies can reduce the irradiance flux at the ground surface, having positive implications in terms of mitigating the urban heat island effect.


Author(s):  
Pieter Snyman ◽  
A. Stephen Steyn

Urban heat islands (UHIs) are characterised by warmer urban air temperatures compared to rural air temperatures, and the intensity is equal to the difference between the two. Air temperatures are measured at various sites across the city of Bloemfontein and then analysed to determine the UHI characteristics. The UHI is found to have a horseshoe shape and reaches a maximum intensity of 8.2 °C at 22:00. The UHI is largely affected by the local topography.


2020 ◽  
Vol 9 (12) ◽  
pp. 726
Author(s):  
Md. Omar Sarif ◽  
Bhagawat Rimal ◽  
Nigel E. Stork

More than half of the world’s populations now live in rapidly expanding urban and its surrounding areas. The consequences for Land Use/Land Cover (LULC) dynamics and Surface Urban Heat Island (SUHI) phenomena are poorly understood for many new cities. We explore this issue and their inter-relationship in the Kathmandu Valley, an area of roughly 694 km2, at decadal intervals using April (summer) Landsat images of 1988, 1998, 2008, and 2018. LULC assessment was made using the Support Vector Machine algorithm. In the Kathmandu Valley, most land is either natural vegetation or agricultural land but in the study period there was a rapid expansion of impervious surfaces in urban areas. Impervious surfaces (IL) grew by 113.44 km2 (16.34% of total area), natural vegetation (VL) by 6.07 km2 (0.87% of total area), resulting in the loss of 118.29 km2 area from agricultural land (17.03% of total area) during 1988–2018. At the same time, the average land surface temperature (LST) increased by nearly 5–7 °C in the city and nearly 3–5 °C at the city boundary. For different LULC classes, the highest mean LST increase during 1988–2018 was 7.11 °C for IL with the lowest being 3.18 °C for VL although there were some fluctuations during this time period. While open land only occupies a small proportion of the landscape, it usually had higher mean LST than all other LULC classes. There was a negative relationship both between LST and Normal Difference Vegetation Index (NDVI) and LST and Normal Difference Moisture Index (NDMI), respectively, and a positive relationship between LST and Normal Difference Built-up Index (NDBI). The result of an urban–rural gradient analysis showed there was sharp decrease of mean LST from the city center outwards to about 15 kms because the NDVI also sharply increased, especially in 2008 and 2018, which clearly shows a surface urban heat island effect. Further from the city center, around 20–25 kms, mean LST increased due to increased agriculture activity. The population of Kathmandu Valley was 2.88 million in 2016 and if the growth trend continues then it is predicted to reach 3.85 million by 2035. Consequently, to avoid the critical effects of increasing SUHI in Kathmandu it is essential to improve urban planning including the implementation of green city technologies.


Sign in / Sign up

Export Citation Format

Share Document