scholarly journals Managing the risk of emergency situations caused by staff at thermal power plants

2019 ◽  
Vol 91 ◽  
pp. 03005 ◽  
Author(s):  
Alexander Kolesnikov ◽  
Tatiana Kokodey ◽  
Tatiana Lomachenko ◽  
Vasiliy Makarov ◽  
Sofia Pospelova

Optimization of power plant operation in start and stop modes is an important task aimed at increasing the reliability and efficiency of its operation. The purpose of development of the new organizational mechanism is reduction of losses connected with incorrect actions of personnel during launching and shutdown operations of Steam-Gas furnaces of thermal power stations. The work is done on the example of one of the power plants of a large generating company. Implementation has confirmed the high efficiency of innovation. Total cost of project implementation at one station is estimated at the rate of 1.4 million rubles and the economic effect of the pilot project implementation in two years was estimated at 5.6 million rubles. It is also noted that further research is required to perform economic calculations for clarification as to which one of the new methodological approaches should be developed in the future. Conclusion was made that, first, regulation and control of personnel actions at the workplace is actually the first example of the distribution of the well-known Kaizen system and its modifications to a new specific area – energy generation. Second, the presented development can be a technological platform for further increase of the level of automation of operation of steam-gas and steam-power plants in non-stationary modes, up to full digitalization of control operation of thermal power plants.

2021 ◽  
Vol 96 (4) ◽  
pp. 107-112
Author(s):  
YU.S. FILIMONOVA ◽  
◽  
E.G. VELICHKO ◽  

Modification of the composition and structure of heavy concrete with the use of a complex chemical-mineral additive consisting of fly ash from thermal power plants, a superplasticizer, a high-valence hardening accelerator AC and a fine-dispersed clinker component is considered. Modified concrete is characterized by an increase in compressive strength at a brand age by 67%, a decrease in the water content of a concrete mixture by 13.6% and an improvement in its workability by 11-12 cm. With the combined use of a superplasticizer and a high-valence hardening accelerator AC a significant synergistic effect is observed in the format of enhancing their plasticizing effect. The high efficiency of the application of the mixed-dispersed clinker component has been established.


Author(s):  
Vitaly Dmitrik ◽  
Igor Kasyanenko ◽  
Alexandr Krakhmalyov

The authors studied the interrelation between the type of structure and the damage rate of the welded joints of steam pipelines made of the heat-resistant pearlitic steels that were operated for a long time, i.e. more than 270 thousand hours in the conditions of creepage and low-cycle fatigue. The purpose of this research was to establish the interrelation between the structural-&-phase condition of the metal used for welded joints of the elements of steam systems and their damageability rate for the service life of welded joints exceeding 270 thousand hours. During the studies, the methods of optical and electron microscopy were used according to the requirements of the guideline documentation and also the methods that are used for the determination of mechanical properties. The level of their reliability has been substantiated and the residual life has been determined. To impart functional performances to welded joints we used well-known methods that were appropriately emended according to the structural changes of above joints. Such changes condition the conversion of the original structure of welded joints into the ferrite-carbide mixture. The availability of the conversion process of the initial structure on the thermal action zone sections (TAZ) of welded joints has essential distinctions due to a different disposition of metal to its own damageability. On the whole, the welded joints are damaged more intensively in comparison to the basic metal of steam pipelines. The analysis of the structural state of welded joints in the steam pipelines of thermal power plants as for the extension of their service life results in a considerable economic effect. Understanding the fact that the metal deterioration in welded joints adheres mainly to the fragile mechanism we managed to establish the level of their damageability that demands the renewal of damaged welded joints. We believe that the damageability level of welded joints that tots up to 0.25 or 0.35 of the volume of their TAZ section should be considered as critical for the service life exceeding 270 thousand hours. The damaged welded joints should be renewed throughout the time period of 15 to 20 thousand hours as soon as the specified damageability level is attained.


Energies ◽  
2021 ◽  
Vol 14 (19) ◽  
pp. 6365
Author(s):  
Alexander Genbach ◽  
Hristo Beloev ◽  
David Bondartsev

A new porous system in power plants allowing the management of the crisis of heat exchange at boiling water in porous structures has been investigated. This study refers to the thermal power plants of electrical power stations and devices for cutting natural and artificial mineral media. Combustion chambers and supersonic nozzles were cooled by different porous structures. The optimum cell sizes of the porous structures were determined and data on the heat transfer capacity for the (critical) heat flow were obtained. A thermal device in the form of a rocket-type burner with a detonation jet showed high efficiency for capillary-porous and flow-through cooling systems. The economic effect per burner is not less than 200–300 dollars, and the coolant consumption is reduced by dozens of times, which is environmentally important. A comparative evaluation of the investigated structures and coatings has advantages over other cooling systems. The integration of mesh structures with capillary-porous coatings of natural mineral media produces a synergistic effect of combining them into a technology of their manufacturing, the expansion of critical loads removal and control of the limit state of the coatings.


Author(s):  
Sergey Trashchenkov ◽  
Vladimir Egorov

<p class="R-AbstractKeywords"><span lang="EN-US">Article is dedicated to the issues of accident scenarios analysis on the process of thermal power plants. The theoretical foundations of the graphical and analytical representation of Petri nets are shown. The article describes the steam cycle process and listing of its technology protections. A state model for power unit equipment and technological protections under the influence of changes in critical process parameters (steam’s temperature, pressure, level) is presented. Conclusions about the plans for further work in this direction are proposed.  </span></p>


2019 ◽  
Vol 140 ◽  
pp. 10001
Author(s):  
Vitaliy Sergeyev ◽  
Irina Anikina ◽  
Konstantin Kalmykov ◽  
Ivan Naletov

Prospects for increasing the efficiency of heat and electric energy-generation and heat-and-power supply at thermal power plants obviously draw attention to such modern and innovative technologies as heat pumps. Heat pumps allow efficient redistribution of energy flows. The abundance of low-potential heat carriers and heat sources in the cycle arrangement of the thermal power plants operation requires modernization of production and increase of the fuel heat utilization factor, therefore, reduction of specific fuel consumption for the production of heat and electricity. This paper analyzes the influence and practicability of introducing heat pumps into the heating circuit of the return water of the heat network of power units with PT-80 and T-250 turbines. Heat pumps of various configurations provide invariant energy conversion factor and efficiency. To assess energy and economic efficiency, modeling of the operation of power units and calculation of heat pump circuits for various refrigerants are performed. The economic effect is represented in quarterly cash savings of operating costs.


Author(s):  
G. Gnädig ◽  
K. Reyser ◽  
W. Fischer ◽  
J. Schmidli

Stricter environmental regulations and the need for high-efficiency energy generation have led an increasing number of industrial users to investigate alternatives to burning waste gases from the industrial plants in conventional thermal power plants. Combined cycle power plants using gas turbines capable of burning low-caloric fuels such as blast furnace gas can meet these requirements with thermal efficiencies of more than 45%.


Author(s):  
Tatyana Syrenko

The main disadvantage of standard technologies of welding steam pipelines of thermal power plants is that they can allow the presence of defective structures close to the defective ones in the metal of the seam and in the sections of the HAZ. In this regard, the question arises about the development of a new technology that will provide the appropriate structure and properties that will increase the service life of steam pipelines and get a significant economic effect. Goal. The goal is improvement of the technology of welding pipelines of thermal power plants based on the study of the features of the formation of welded joints operating in Creep conditions. Methodology. The level of wear of the elements of the Steam-conducting path was estimated taking into account the provisions of the regulatory documentation of metallographic analysis, determination of chemical composition and properties, as well as the degree of their deformation. Results. It is revealed that welded joints are characterized by initial structural heterogeneity, which is closely related to long-term strength, ductility and impact strength. For example, at different sections of a welded joint, there is a different intensity of transition of alloying elements and, accordingly, a different type of structural component can be formed. The proposed technology of welding repair of damaged elements of steam pipelines using mechanized welding in CO2+Ar provides for the production of welded joints with a higher level of uniformity of structure, chemical composition and properties. Scientific novelty and practical significance. The welding technology has been improved, which includes developing the modes for performing repair work by mechanized welding in an Ar + CO2 environment of steam pipeline samples with a depth of ≥ 20 mm and a width of ≥ 30 mm, and differs from the known ones by using linear energy welding of 1.2–1.5 MJ/m.


Energies ◽  
2020 ◽  
Vol 13 (1) ◽  
pp. 259 ◽  
Author(s):  
Dmitrii Glushkov ◽  
Geniy Kuznetsov ◽  
Kristina Paushkina

Combustion characteristics were studied experimentally for single droplets of fuel slurries based on wet coal processing waste with municipal solid waste components (cardboard, plastic, rubber, and wood) and used turbine oil. We established the ignition delay time for three various groups of fuel compositions in motionless air at 600–1000 °C. The minimum values are 3 s, and the maximum ones are 25 s. The maximum temperatures in the droplet vicinity reach 1300 °C during fuel combustion for compositions with 10% of used oil. The combustion temperatures of fuel compositions without oil are 200–300 °C lower. The concentrations of anthropogenic emissions in flue gases do not exceed those from dry coal combustion. Adding used oils to composite fuels reduces the concentrations of dioxins and furans in flue gases when municipal solid waste in the fuel burns out due to high combustion temperatures. Based on the experimental research findings, we have elaborated a strategy of combined industrial and municipal waste recovery by burning it as part of composite fuels, as illustrated by three neighboring regions of the Russian Federation with different industrial structures and levels of social development. This strategy suggests switching three typical coal-fired thermal power plants (one in each of the regions) to composite liquid fuel. It will reduce the hazard of waste to the environment and decrease the consumption of high-quality coals for power generation. Implementing the developed strategy for 25 years will save 145 Mt of coal and recover 190–260 Mt of waste. The positive economic effect, considering the modernization of fuel handling systems at thermal power plants and the construction of a fuel preparation plant, will make up 5.7 to 6.9 billion dollars, or 65–78%, respectively, of the main costs of three thermal power plants operating on coal within the identical period.


Author(s):  
Takuya Murakoshi ◽  
Ken Suzuki ◽  
Isamu Nonaka ◽  
Hideo Miura

It is imperative to reduce greenhouse-effect gas such as CO2. Since the emission of CO2 from fossil fuel combustion to generate electricity is a critical quantity, accounting for 42% of global CO2 emissions in 2013 [1], high efficiency of thermal power plants is indispensable for reducing the CO2 emissions. In order to further improve thermal efficiency of thermal power plants, various R&D projects have been conducted (such as Thermie 700 in the EU and DOE-Vision 21 in the US) to develop A-USC (advanced ultra-supercritical) power plants of the 700°C-class. Alloy 617 is a candidate alloy for boiler tubes and pipes. Since it has higher coefficient of thermal expansion than conventional ferritic steels, however, the increase in the thermal stress is of concern in the power plant components. In addition, it is important to consider the effect of creep-fatigue loading on the lifetime of the components in the design and maintenance of the components. This is because frequent output change is inevitable for assuring the stable and reliable supply of electricity under the combination with renewable energies. Conventionally, the creep-fatigue damage has been evaluated by linear cumulative damage rule. However, it has been found that there are a lot of loading conditions and materials to which the rule can’t be applied [2–3]. Therefore, it is indispensable to establish the method for evaluating the total damage of materials under creep-fatigue loading conditions. Thus, the authors conducted fatigue and creep-fatigue tests and observed the change of the micro texture to elucidate the damage evolution of the alloy from the viewpoint of the change of the order of atom arrangement using EBSD (Electron Back-Scatter Diffraction) analysis. As a result, it was found that the difference of damage accumulation under fatigue and creep-fatigue loadings appeared in the change of the GROD (Grain Reference Orientation Deviation) value in the inelastic strain range. Therefore, the difference in the damage mode between fatigue and creep loads can be analyzed by using these KAM and GROD values.


Sign in / Sign up

Export Citation Format

Share Document