scholarly journals The environmental policy implementation of the city of Sochi (Russia)

2019 ◽  
Vol 91 ◽  
pp. 08019 ◽  
Author(s):  
Anna Balabanova ◽  
Nadezhda Keschyan ◽  
Tatyana Borisova ◽  
Ekaterina Hachemizova

The article discusses the structure of city environmental management, regulatory documents, environmental monitoring system, the consequences of environmental policy at the local and regional levels, including cost analysis associated with the implementation of the city’s environmental strategies.

2021 ◽  
Vol 245 ◽  
pp. 02015
Author(s):  
Yijie Li

The monitoring items shall be determined in a scientific and reasonable way according to the environmental monitoring standards and specifications, The purpose of environmental monitoring is to reflect the monitoring data of environmental monitoring system in real time, accurately and comprehensively. It provides scientific basis for environmental planning and macro decision-making. It makes the environmental monitoring system feasible and economical. Guided by the technical route of environmental monitoring, combined with the practical principle and priority monitoring principle, the comprehensive planning and reasonable arrangement are made. Environmental protection, scientific research and other purposes. Aiming at the monitoring node and monitoring center of environmental monitoring system, this paper analyzes the important position of environmental management and monitoring plan. This paper discusses the composition and structure of the monitoring system, in order to maximize the role of environmental management, reduce and mitigate the impact of monitoring projects on the ecological environment, and realize the sustainable development and operation of environmental system monitoring.


Author(s):  
I. V. May ◽  
A. A. Kokoulina ◽  
S. Yu. Balashov

Introduction. The city of Chita of Zabaikalsky region is one of the cities of Russia, priority on level of pollution of atmosphere. Of the order of 130 impurities emitted by the sources of the city, 12 are monitored at 5 posts of the Roshydromet network. Maximum monthly average concentrations are formed by benz (a) pyrene (up to 56.8 MPC), hydrogen sulfide (12.3 MPC), suspended particles (up to 4PDC), phenol (up to 3.6 MPC). Significant emissions (59.73 thousand tons in 2018) are aggravated by the use of coal as a fuel by heat and power enterprises and the private sector, climatic and geographical features. Within the framework of the Federal project “Clean Air” of the national project “Ecology”, it is envisaged to reduce the gross emission of pollutants into the atmosphere of Chita by 8.75 thousand tons by 2024, which should lead to a significant improvement in the safety and quality of life of citizens. It is necessary to identify the most “risky “components of pollution for health.It is important to understand: whether the environmental monitoring system reflects the real picture of the dangers posed by pollution of the city’s atmosphere; whether there is a need to optimize the monitoring system for the subsequent assessment of the effectiveness and efficiency of measures; what impurities and at what points should be monitored in the interests of the population, administration and economic entities implementing air protection measures.The aim of the study is to develop recommendations for optimizing the program of environmental monitoring of air quality in the city of Chita, taking into account the criteria of danger to public health for the subsequent evaluation of the effectiveness and effectiveness of the Federal project “Clean Air”.Materials and methods. Justification of optimization of monitoring programs was carried out through the calculation of hazard indices, considering: the mass of emissions and toxicological characteristics of each chemical; the population under the influence. A vector map of the city with a layer “population density” was used as a topographic base. The indices were calculated for regular grid cells covering the residential area. For each cell, the repeatability of winds of 8 points from the priority enterprises and the population within the calculated cell were taken into account. As a result, each calculation cell was characterized by a total coefficient, taking into account the danger of potential impacts of emissions. Based on the results of the assessments, recommendations were formulated to optimize the placement of posts in the city and the formation of monitoring programs.Results. Indices of carcinogenic danger to the health of the population of Chita ranged from 584,805. 96 to 0.03 (priorities: carbon (soot), benzene, benz (a) pyrene); indices of non-carcinogenic danger — from 1,443,558. 24 to 0.00 (priorities: sulfur dioxide, inorganic dust containing 70–20% SiO2, fuel oil ash). The greatest danger to public health stationary sources of emissions form in the North-Western, Western and South-Eastern parts of the city. Roshydromet posts in these zones are absent.Conclusions. As part of the objectives of the project “Clean Air”, it is recommended to Supplement the existing state network of observations of atmospheric air quality in Chita with two posts; to include manganese, xylene, vanadium pentoxide in the monitoring programs, to carry out the determination of Benz(a)pyrene et all posts, which will allow to fully and adequately assess the danger of emissions of economic entities, as well as the effectiveness and efficiency of the provided air protection measures.


2021 ◽  
Vol 11 (5) ◽  
pp. 2347 ◽  
Author(s):  
Jorge Solis ◽  
Christoffer Karlsson ◽  
Simon Johansson ◽  
Kristoffer Richardsson

This research aims to develop an automatic unmanned aerial vehicle (UAV)-based indoor environmental monitoring system for the acquisition of data at a very fine scale to detect rapid changes in environmental features of plants growing in greenhouses. Due to the complexity of the proposed research, in this paper we proposed an off-board distributed control system based on visual input for a micro aerial vehicle (MAV) able to hover, navigate, and fly to a desired target location without considerably affecting the effective flight time. Based on the experimental results, the MAV was able to land on the desired location within a radius of about 10 cm from the center point of the landing pad, with a reduction in the effective flight time of about 28%.


2013 ◽  
Vol 791-793 ◽  
pp. 870-873
Author(s):  
Zhong Hui Yin ◽  
Bin Hui Zhang ◽  
An Ning Zhang ◽  
Zi Long Jing ◽  
Yu Ming Gu

In order to protect the components of monitoring, some measures should be taken when refuge chamber uses outside environmental monitoring system. This paper designs a kind of protective device for outside environmental monitoring system based on related theory analysis and coal mine environment. It can protect monitoring components from gas explosion shock wave. Meantime there is good contact between sensitive element and outside environment to guarantee the normal work of the monitoring system. Finally, this paper builds the model of protective device, and analyses its structural strength.


2017 ◽  
Vol 13 (08) ◽  
pp. 4
Author(s):  
Yong Jin ◽  
Zhenjiang Qian ◽  
Xiaoshuang Xing ◽  
Lu Shen

ensor nodes vulnerable becomes a major bottleneck restricting the wide application of wireless sensor networks WSNs (Wireless Sensor Networks). In order to satisfy the needs of industrial production and daily living environment monitoring, it is important to improve the survivability of wireless sensor networks in environmental monitoring application. In order to have a reliable environment monitoring system, this paper analyzed the damage types and causes of WSNs and the measurement methods of WSNs survivability. Then, we studied the fault detection method and finally realized the design can improve the survivability of the scheme. The robust guarantee scheme through hardware design and algorithm model, realized the remote wireless communication services and prolonged the network life cycle, so as to improve the survivability of the environmental monitoring system.


Sign in / Sign up

Export Citation Format

Share Document