scholarly journals The effect of clay water content in the Jet Erosion Test

2019 ◽  
Vol 92 ◽  
pp. 02016
Author(s):  
Raniero Beber ◽  
Alessandro Tarantino ◽  
Matteo Pedrotti ◽  
Rebecca Lunn

The understanding of the onset of breaching induced by surface erosion is fundamental to enable definition of the level of protection afforded by embankments and provision of standards for the design of new structures and the upgrading of existing ones. Compacted embankment materials are generally partially saturated due to seasonal variation in the water content. At the onset of the overflow process embankments undergo to a wetting process due to the changes at the outer surface boundary conditions (i.e. overflow). Erosion behaviour is known to be a counterbalance between gravity forces and shear erosion forces. However, as the particle size decreases (i.e. clayey soils), gravitational forces become negligible and electrochemical interaction between particles play a dominant role. Clay microstructure (e.g. particle configuration and inter-particle forces) changes with the hydro-mechanical stresses history. Thus, it is necessary to consider the microstructural changes in particle configuration to understand the influence of microstructure on the macroscopic behaviour of clay during erosion. Upon wetting, clay have a swelling/collapse behaviour. This research presents experimental results on erosion of clay samples compacted at the same initial dry density but with different compaction water content. The influence of different wetting times on erosion is also investigated. We show that for a given as-compacted water content, the longer the wetting stage, and hence the higher the sample water content, the more erodible the samples. Additionally, for samples compacted at the same dry density, the ones compacted on the dry side of optimum are more erodible than samples compacted at the optimum water content, despite the lower water content at formation. We hypothesise that this may be due to the formation of a different initial microstructure in sample on the dry side of optimum (i.e. bi-modal pore size distribution). Our results contribute to the fundamental understanding of time-dependent mechanisms that influence erosion of clay embankments during overflow and, hence, to embankment failure. In addition, these tests show how basic concepts of unsaturated soil mechanics can serve as a guide to ‘design’ the compaction conditions of embankment material.

2021 ◽  
Author(s):  
Tao Jian ◽  
Ling-wei Kong ◽  
Wei Bai ◽  
Zhi-liang Sun

Abstract Loess is widely deposited in arid and semi-arid areas and is characterized by low dry density, developed pore space, and loose structure, which is not commensurate with that high structural strength and shear strength in the dry state. Many natural phenomena and experimental studies show that intact loess is very sensitive to the change of water content, with slight increases in water content causing a rapid reduction in strength. Abundant information is available in the literature for collapsibility of loess; however, the research on the evolution of loess compressibility during wetting is still minimal, which is very helpful to understand the loess collapsible deformation caused by long-term irrigation. In this paper, the evolution of compressibility of intact loess during wetting are studied by oedometer test, and the microstructure and pore size distribution (PSD) is characterized on intact loess specimens with different water content before and after oedometer tests by scanning electron microscopy (SEM) and mercury intrusion porosimetry (MIP) methods. The results show that the compression index (Cc) and secondary compression index (Cα) of intact loess depend on water content and vertical stress and change abruptly after the vertical stress exceeds the yield stress. The Cα/Cc values of the intact loess are not constant, which increased with the vertical stress to peak and then gradually decreased and tend to 0.025. Both wetting and loading can cause microstructural damage to the intact loess, in which loading leads to the collapse of the overhead structure and transformation from a bimodal PSD into a single PSD, and wetting intensifies the collapse of microstructure to form a compacted interlocking structure and promotes the transformation of medium pores into small pores.


Geosciences ◽  
2020 ◽  
Vol 10 (9) ◽  
pp. 364
Author(s):  
Delwyn G. Fredlund ◽  
Murray D. Fredlund

The application of unsaturated soil mechanics in routine geotechnical engineering applications requires the determination of unsaturated soil properties. Unfortunately, the cost of direct measurement of unsaturated soil properties goes beyond the financial budget of most clients. A solution has arisen, however, that involves the measurement of two less costly soil properties functions that can be used in conjunction with a series of assumptions and estimation methodologies. The two laboratory tests involve measurement of the: (i) gravimetric water content versus soil suction, referred to as the soil-water characteristic curve (w-SWCC) and (ii) water content versus void ratio, referred to as the shrinkage curve (SC). These two unsaturated soil property relationships can be used along with saturated soil properties to extend unsaturated soil properties over the full range of soil suctions. “Estimation procedures” have been developed and verified for all physical properties of interest in unsaturated soil mechanics. The use of estimation procedures has meant that the geotechnical engineer must operate within a new paradigm. The new paradigm provides sufficient accuracy for most geotechnical engineering applications. The net result is an increased decision-making capability for geotechnical engineers.


2020 ◽  
Author(s):  
MODI ZHU ◽  
Jingfeng Wang ◽  
Husayn Sharif ◽  
Valeriy Ivanov ◽  
Aleksey Sheshukov

2011 ◽  
Vol 367 ◽  
pp. 63-71 ◽  
Author(s):  
Adrian O. Eberemu ◽  
Agapitus A. Amadi ◽  
Joseph E. Edeh

Laboratory study on compacted tropical clay treated with up to 16% rice husk ash (RHA), an agro-industrial waste; to evaluate its hydraulic properties and hence its suitability in waste containment systems was carried out. Soil-RHA mixtures were compacted using standard Proctor, West African Standard and modified Proctor efforts at-2, 0, 2 and 4% of optimum moisture content (OMC). Compacted samples were permeated and the hydraulic behaviour of the material was examined considering the effects of moulding water content, water content relative to optimum, dry density and RHA contents. Results showed decreasing hydraulic conductivity with increasing moulding water content and compactive efforts; it also varied greatly between the dry and wet side of optimum decreasing towards the wet side. Hydraulic conductivity generally decreased with increased dry density for all effort. Hydraulic conductivity increased with rice husk ash treatment at the OMC; but were within recommended values of 1 x 10-7 cm/s for up to 8% rice husk ash treatment irrespective of the compactive effort used. This shows the suitability of the material as a hydraulic barrier in waste containment systems for up to 8% rice husk ash treatment and beneficial reuse of this agro-industrial waste product.


2012 ◽  
Vol 204-208 ◽  
pp. 22-27
Author(s):  
Yan Zhu ◽  
Yun Xu Chen

Compression and collapse of unsaturated compacted loess are studied by using dry density and water content which easily controlled in engineering, the controlling range of dry density and water content are confirmed respectively. Then the deformation of compression and collapse and the frequency of engineering damager occurrence can be decreased. In addition, the mechanical characteristics of loess in different directions may differ because the loess was consolidated only under the condition of its upper weight of soil and load. The conventional mechanical experiments, including one-dimensional compress and collapse test, were conducted with the specimen of loess soil in different angle from the original horizontal plane. The test result shows that the loess is anisotropic


Sign in / Sign up

Export Citation Format

Share Document