Compaction and sealing properties of bentonite/claystone mixture: Impacts of bentonite fraction, water content and dry density

2021 ◽  
Vol 287 ◽  
pp. 106122
Author(s):  
Zhixiong Zeng ◽  
Yu-Jun Cui ◽  
Jean Talandier
Keyword(s):  
2011 ◽  
Vol 367 ◽  
pp. 63-71 ◽  
Author(s):  
Adrian O. Eberemu ◽  
Agapitus A. Amadi ◽  
Joseph E. Edeh

Laboratory study on compacted tropical clay treated with up to 16% rice husk ash (RHA), an agro-industrial waste; to evaluate its hydraulic properties and hence its suitability in waste containment systems was carried out. Soil-RHA mixtures were compacted using standard Proctor, West African Standard and modified Proctor efforts at-2, 0, 2 and 4% of optimum moisture content (OMC). Compacted samples were permeated and the hydraulic behaviour of the material was examined considering the effects of moulding water content, water content relative to optimum, dry density and RHA contents. Results showed decreasing hydraulic conductivity with increasing moulding water content and compactive efforts; it also varied greatly between the dry and wet side of optimum decreasing towards the wet side. Hydraulic conductivity generally decreased with increased dry density for all effort. Hydraulic conductivity increased with rice husk ash treatment at the OMC; but were within recommended values of 1 x 10-7 cm/s for up to 8% rice husk ash treatment irrespective of the compactive effort used. This shows the suitability of the material as a hydraulic barrier in waste containment systems for up to 8% rice husk ash treatment and beneficial reuse of this agro-industrial waste product.


2012 ◽  
Vol 204-208 ◽  
pp. 22-27
Author(s):  
Yan Zhu ◽  
Yun Xu Chen

Compression and collapse of unsaturated compacted loess are studied by using dry density and water content which easily controlled in engineering, the controlling range of dry density and water content are confirmed respectively. Then the deformation of compression and collapse and the frequency of engineering damager occurrence can be decreased. In addition, the mechanical characteristics of loess in different directions may differ because the loess was consolidated only under the condition of its upper weight of soil and load. The conventional mechanical experiments, including one-dimensional compress and collapse test, were conducted with the specimen of loess soil in different angle from the original horizontal plane. The test result shows that the loess is anisotropic


2018 ◽  
Vol 2018 ◽  
pp. 1-11 ◽  
Author(s):  
Yong-Gui Chen ◽  
Xue-Min Liu ◽  
Xiang Mu ◽  
Wei-Min Ye ◽  
Yu-Jun Cui ◽  
...  

In China, Gaomiaozi (GMZ) bentonite serves as a feasible buffer material in the high-level radioactive waste (HLW) repository, while its thermal conductivity is seen as a crucial parameter for the safety running of the HLW disposal. Due to the tremendous amount of heat released by such waste, the thermal conductivity of the buffer material is a crucial parameter for the safety running of the high-level radioactive waste disposal. For the purpose of improving its thermal conductivity, this research used the graphene oxide (GO) to modify the pure bentonite and then the nanocarbon-based bentonite (GO-GMZ) was obtained chemically. The thermal conductivity of this modified soil has been measured and investigated under various conditions in this study: the GO content, dry density, and water content. Researches confirm that the thermal conductivity of the modified bentonite is codetermined by the three conditions mentioned above, namely, the value of GO content, dry density, and water content. Besides, the study proposes an improved geometric mean model based on the special condition to predict the thermal conductivity of the compacted specimen; moreover, the calculated values are also compared with the experimental data.


2021 ◽  
Vol 1046 ◽  
pp. 83-88
Author(s):  
Leonardo Marchiori ◽  
André Studart ◽  
António Albuquerque ◽  
Victor Cavaleiro ◽  
Abílio P. Silva

A water treatment sludge (WTS) was characterized in order to evaluate if its properties would be suitable for use as liner of earthworks or for strengthening a clay soil. A WTS and a clayey soil was characterized in terms of granulometry, cumulative volumes, specific surface, density, plastic limit, liquid limit, water content, hydraulic conductivity, and characteristics of compaction (optimal water content and dry density). This study aimed to exhibit and evaluate these investigated parameters of WTS, soft soil and mixed proportions between the materials for liners’ material production while evaluating soft soils’ reinforcement feasibility. The results have shown WTS’s contribution with its fine granulometry and compaction characteristics, indicating filling properties and possible feasibility as soft soils additions for liners’ material production while being applicable for soils‘ reinforcements, corroborating with existing literature on the subject. Thus, the currently developed investigation has exposed WTS as a potential addition for these applications while also attending society’s new demands towards a more sustainable future.


Author(s):  
Mozhen Hu ◽  
Yu-Jun Cui ◽  
Yunzhi Tan

Metakaolin has been widely used as pozzolanic additive to improve the pozzolanic activity of lime-based products. In this study, normal standard Proctor compaction test was performed on metakaolin with (5% lime) and without (0% lime) lime addition. The changes in stiffness, suction and microstructure with remoulding water content were investigated on statically compacted samples. Results show that lime-treated metakaolin exhibits one and half-peak compaction curve, while untreated metakaolin exhibits common one-peak compaction curve. The uncommon shape of the compaction curve of the treated metakaolin can be explained by the non-fully developed soil suction when water is not continuous. Treated and untreated samples compacted at both dry and wet of optimum show uni-modal pore size distribution characteristics, indicating the absence of aggregates. This is related to the specific thermal treatment, forming separate metakaolin platelets and leading to a modified uniform structure with diffuse platelets. The soil stiffness is rather dominated by the number of particle contacts or soil dry density, the effect of suction being insignificant. For the suction changes, on the dry side, the effect of pore size distribution prevails facing the effect of water content, while on wet side it is the effect of water content that becomes prevailing.


2019 ◽  
Vol 2019 ◽  
pp. 1-8
Author(s):  
Ling-ling Wu ◽  
Yao-hui Guo ◽  
Kai-wen Tong ◽  
Lin Hu ◽  
Qing Yu ◽  
...  

Due to precipitation infiltration, evaporation of water, and rising and falling of the wetting line, the tailings are in a cyclical moisture absorption-dehumidification state for a long time. The mechanism of change of physical and mechanical properties of tailings during the dry and wet cycle is related to the safe operation of the entire tailings dam. In order to explore the variation of the mechanical behavior of tailings in a tailings pond in Hunan Province with the number of dry and wet cycles under different initial water content conditions, the tailings sand samples with moisture content of 6.10%, 10.40%, 14.00%, 18.20%, and 21.00% were subjected to 0 to 6 times of moisture absorption and desorption cycles at natural dry density, and then, the stress-strain relationship curves, pore water pressure, failure mode, and shear dilatancy of these samples were tested by triaxial consolidation undrained shear test. The test results showed that when the number of moisture absorption and desorption cycles increases, the strength of the tailings sand sample was weakened, and the strength tended to be stable after 3∼5 cycles. In addition, the stress-strain curve of the sample with lower water content dropped sharply. However, the pore pressure of tailings sand samples with different water contents under different wet and dry cycles all showed a phenomenon of increasing first and then decreasing in general.


2020 ◽  
pp. 105678952095042
Author(s):  
Xiaoyu Bai ◽  
Jiaxiao Ma ◽  
Junwei Liu ◽  
Mingyi Zhang ◽  
Nan Yan ◽  
...  

In order to reuse waste soda residue, the feasibility of utilizing liquid soda residue and liquid fly ash to prepare soda residue soil was investigated. The mechanical properties of the soda residue soil were studied and analyzed through laboratory tests and field tests. The raw materials preparation process and liquid-liquid mixing method in the field were determined, and the optimal mixing proportion of the soda residue soil was investigated by compaction test and micro penetration test. And the filling quality of the liquid-liquid mixing and solid-liquid soda residue soil was measured by micro penetration test, light dynamic penetration test, and variable energy dynamic penetration test. The test results showed that the optimal mass ratio of soda residue to fly ash is 7:3. The optimal water content and maximum dry density of the soda residue soil with the optimal mix ratio are 63.5% and 0.88 g/cm3, respectively. After 5 months of natural drying, the soda residue soil filled by liquid soda residue and liquid fly ash has higher strength and better uniformity of hardness. The water content of the soda residue soil is between 160% to 180%, and drainage consolidation is the effective method to reduce the water content and improve the strength of the soda residue soil. Compared with the method of preparing the soda residue soil by solid mixing, the method used in this experiment is simple, efficient and feasible.


2002 ◽  
Vol 39 (6) ◽  
pp. 1341-1357 ◽  
Author(s):  
Jean-Marie Fleureau ◽  
Jean-Claude Verbrugge ◽  
Pedro J Huergo ◽  
António Gomes Correia ◽  
Siba Kheirbek-Saoud

A relatively large number of drying and wetting tests have been performed on clayey soils compacted at the standard or modified Proctor optimum water content and maximum density and compared with tests on normally consolidated or overconsolidated soils. The results show that drying and wetting paths on compacted soils are fairly linear and reversible in the void ratio or water content versus negative pore-water pressure planes. On the wet side of the optimum, the wetting paths are independent of the compaction water content and can be approached by compaction tests with measurement of the negative pore-water pressure. Correlations have been established between the liquid limit of the soils and such properties as the optimum water content and negative pore-water pressure, the maximum dry density, and the swelling or drying index. Although based on a limited number of tests, these correlations provide a fairly good basis to model the drying–wetting paths when all the necessary data are not available.Key words: compaction, unsaturated soils, clays, drying, wetting, Proctor conditions.


Sign in / Sign up

Export Citation Format

Share Document