Effect of dry density on the relationship between water content and TDR-measured apparent dielectric permittivity in compacted clay

Author(s):  
A Tarantino ◽  
J Zornberg ◽  
J McCartney ◽  
A Pozzato
2012 ◽  
Vol 212-213 ◽  
pp. 108-112 ◽  
Author(s):  
Wen Sheng Dong ◽  
Xiu Fang Jiang ◽  
Xian Feng He ◽  
Ying Ying Zai

Aim to the high sandy river “ripping up the riverbed” phenomenon, by experiment, analyzing the relationship between clay dry density, water content, plasticity index and its shear strength, and its mechanical properties. Create the conditions for studying clay mechanical strength and the critical condition of “bottom tearing scour”.


2011 ◽  
Vol 250-253 ◽  
pp. 2157-2160
Author(s):  
Yan Xun Song ◽  
Qiang Xu ◽  
Xi An Li ◽  
Hong Zhou Lin

The matric suction has very important influence on the characteristics of unsaturated sand; and it is closely relevant to density. In order to discuss the relationship among the matric suction, water content and dry density, the matric suction of the eolian sand were measured in laboratory. The soil-water characteristics curves for unsaturated eolian sand with different dry densities are obtained. The test results show that the variation tendency of soil-water characteristics curves has been corresponding to the different densities.


2020 ◽  
Vol 53 (3) ◽  
pp. 452-459 ◽  
Author(s):  
Satoru Shimobe ◽  
Giovanni Spagnoli

Soil compaction is an important operation during the construction of road embankments, railway subgrade, earth dams and compacted clay liners for waste disposal. Soil compaction is usually controlled based on the ratio of the dry density of the soil to the soil water content. However, this relationship presents problems in both the laboratory and in the field when using excess compaction energy levels in cohesive soils with a high natural water content, including differences in the compaction energy levels and a reduction in strength as a result of over-compaction. The compaction curve, which considered the compaction energy levels, is usually unknown in the field and the main factors influencing the stiffness and strength of compacted soils are the dry density and the degree of saturation. We show here compaction results for soils in terms of the dry density and degree of saturation and introduce the concept of an optimum compaction line.


Sensors ◽  
2021 ◽  
Vol 21 (23) ◽  
pp. 7983
Author(s):  
Qingbing Liu ◽  
Jinge Wang ◽  
Hongwei Zheng ◽  
Tie Hu ◽  
Jie Zheng

This paper presents a model for estimating the moisture of loess from an image grayscale value. A series of well-controlled air-dry tests were performed on saturated Malan loess, and the moisture content of the loess sample during the desiccation process was automatically recorded while the soil images were continually captured using a photogrammetric device equipped with a CMOS image sensor. By converting the red, green, and blue (RGB) image into a grayscale one, the relationship between the water content and grayscale value, referred to as the water content–gray value characteristic curve (WGCC), was obtained; the impacts of dry density, particle size distribution, and illuminance on WGCC were investigated. It is shown that the grayscale value increases as the water content decreases; based on the rate of increase of grayscale value, the WGCC can be segmented into three stages: slow-rise, rapid-rise, and asymptotically stable stages. The influences that dry density and particle size distribution have on WGCC are dependent on light reflection and transmission, and this dependence is closely related to soil water types and their relative proportion. Besides, the WGCC for a given soil sample is unique if normalized with illuminance. The mechanism behind the three stages of WGCC is discussed in terms of visible light reflection. A mathematical model was proposed to describe WGCC, and the physical meaning of the model parameters was interpreted. The proposed model is validated independently using another six different types of loess samples and is shown to match well the experimental data. The results of this study can provide a reference for the development of non-contact soil moisture monitoring methods as well as relevant sensors and instruments.


Geophysics ◽  
2010 ◽  
Vol 75 (1) ◽  
pp. J1-J9 ◽  
Author(s):  
Christina Salat ◽  
Andreas Junge

To provide a database for interpreting GPR field data by means of small-scale laboratory studies, we have determined the real and imaginary parts of the dielectric permittivity of fine-grained fractions of soil samples from eastern Spain in the laboratory. We use the parallel-plate method in combination with an impedance analyzer and focus on the frequency of [Formula: see text]. The measurements are compared to physical properties such as volumetric water content, dry density, clay fraction, and carbonate content. The results show the well-known increase in dielectric permittivity with increasing water content, as presented in the literature; however, our values are systematically higher. This deviation may be caused by the exceptionally high carbonate content of the samples. We establish a basic relationship between dielectric permittivity and water content that is characteristic for soils in the research area. In addition to the dominating influence of water on permittivity, we find a correlation with dry density as well, which is linear for dry samples. Finally, we calculate the attenuation coefficients and find high attenuation for samples with high clay fraction, even at low water contents. A 1D model of the permittivity distribution is constructed from borehole data (water content and layer thickness) coincident with a GPR profile and from the laboratory data. The modeled GPR trace explains the observation and thus connects laboratory measurements to GPR data.


Sign in / Sign up

Export Citation Format

Share Document